
University of the Philippines Manila

College of Arts and Sciences

Department of Physical Sciences and Mathematics

TailSafe: A Pig Head-to-Rear Contact

Detection System using Convolutional

Neural Networks

A special problem in partial fulfillment

of the requirements for the degree of

Bachelor of Science in Computer Science

Submitted by:

Romwell Joackin O. Santos

June 2023

Permission is given for the following people to have access to this SP:

Available to the general public Yes

Available only after consultation with author/SP adviser No

Available only to those bound by confidentiality agreement No

ACCEPTANCE SHEET

The Special Problem entitled “TailSafe: A Pig Head-to-Rear Contact
Detection System using Convolutional Neural Networks” prepared and submitted
by Romwell Joackin O. Santos in partial fulfillment of the requirements for the
degree of Bachelor of Science in Computer Science has been examined and is
recommended for acceptance.

Vincent Peter C. Magboo, M.D., M.Sc.
Adviser

EXAMINERS:
Approved Disapproved

1. Avegail D. Carpio, M.Sc.
2. Richard Bryann L. Chua, Ph.D. (cand.)
3. Perlita E. Gasmen, M.Sc. (cand.)
4. Ma. Sheila A. Magboo, Ph.D. (cand.)
5. Marbert John C. Marasigan, M.Sc. (cand.)
6. Geoffrey A. Solano, Ph.D.

Accepted and approved as partial fulfillment of the requirements for the
degree of Bachelor of Science in Computer Science.

Vio Jianu C. Mojica, M.Sc. Marie Josephine M. De Luna, Ph.D.

Unit Head Chair
Mathematical and Computing Sciences Unit Department of Physical Sciences

Department of Physical Sciences and Mathematics
and Mathematics

Maria Constancia O. Carrillo, Ph.D.
Dean

College of Arts and Sciences

i

Abstract

Pig tail biting poses significant challenges in pig farm monitoring, serving as an

indicator of underlying pen issues. Existing monitoring methods are limited in

their scalability and invasiveness. This study introduces TailSafe, a web-based de-

cision support tool utilizing YOLOv5 and convolutional neural networks. TailSafe

enables farmers to diagnose pig pen issues through potential tail biting outbreaks.

Users upload pig pen images for processing, and the system provides results for

contact presence classification and counts. TailSafe comprises two components: a

detection method to identify pig heads and rears, and an interaction method to

compute head-to-rear IoUs for contact identification.

Keywords: tail biting, decision support tool, YOLOv5, convolutional neural network,

pig pen images, contact presence, detection method, interaction method

Contents

Acceptance Sheet i

Abstract ii

List of Figures vi

List of Tables viii

I. Introduction 1

A. Background of the Study . 1

B. Statement of the Problem . 3

C. Objectives of the Study . 3

D. Significance of the Project . 6

E. Scope and Limitations . 7

F. Assumptions . 8

II. Review of Related Literature 9

A. Precision Livestock Farming Significance 9

B. Behavioral Analysis . 10

C. Pig Detection . 12

D. Synthesis . 16

III. Theoretical Framework 17

A. Tail Biting . 17

B. Convolutional Neural Network 17

1. Convolution Layer . 18

2. Pooling Layer . 18

3. Fully Connected Layer . 19

C. Detection Method . 19

1. YOLO Algortihm . 19

2. YOLOv5 . 20

iii

3. Training YOLOv5 . 21

4. YOLOv5 Architecture . 22

D. Interaction Method . 23

E. Data Augmentation . 24

1. Spatial Augmentation . 24

2. Pixel Augmentation . 24

F. Detection Performance Metrics 26

G. Interaction Performance Metrics 27

1. Confusion Matrix . 27

2. Classification Measure . 28

IV. Design and Implementation 30

A. Pig Tail Biting Dataset . 30

B. Research Approach . 30

C. Use Cases . 31

D. Technical Architecture . 32

V. Results 36

A. Dataset . 36

B. Data Processing . 37

C. Detection Method . 38

1. Determining the Best Model Size 38

2. Training the Base Model and Hyperparameter Tuning 40

3. Evaluating Medium-Sized Model Results 40

D. Interaction Method . 42

1. Integrating Methods . 42

2. Evaluating Interaction Results 43

E. Model Improvements . 45

1. Creating Different Datasets 45

2. Evaluating Improved Datasets Results: Detection 46

iv

3. Evaluating Improved Datasets Results: Interaction 48

F. Best End-to-End Models . 49

G. Comparative Analysis . 51

H. TailSafe: Website Application 52

1. Landing Page . 52

2. Image Confirmation Page 54

3. Results Page . 55

I. Summary of Detection and Interaction Method Results 57

1. Detection Models using Primary Dataset 57

2. Detection Models using Secondary Datasets 58

3. Interaction Method Results using Primary Dataset 58

4. Interaction Method Results using Secondary Dataset 63

VI. Discussions 67

A. Discussion of Work . 67

B. Comparison to Previous Work 69

C. Issues in Development . 69

VII. Conclusions 71

VIII. Recommendations 73

IX. Bibliography 75

X. Appendix 79

A. Google Colab Notebooks . 79

B. Source Code . 105

1. Django Web Framework . 105

2. Website HTML files . 110

XI. Acknowledgment 115

v

List of Figures

1 Interaction Scoring Sample [1] . 12

2 YOLO with ResNet50 Backbone and Sub-Networks [1] 13

3 YOLOv5 Model Sizes Comparison [2] 20

4 YOLOv5 Model Sizes [3] . 21

5 YOLOv5 Network Architecture [4] 22

6 IoU formula [1] . 24

7 Spatial Augmentation: 90◦ Rotations 25

8 Spatial Augmentation: ± 0-35◦ Rotations 25

9 Spatial Augmentation: Horizontal Flipping 25

10 Spatial Augmentation: Crop . 25

11 Pixel Augmentation: Brightness 25

12 Sample mAP Curve Graph . 26

13 Detection Metrics . 27

14 Use Case Diagram of TailSafe . 32

15 Detection Method Training Pipeline 33

16 Interaction Method Training Pipeline 34

17 Data Processing Pipeline: Detection Dataset 35

18 Data Processing Pipeline: Interaction Dataset 35

19 Sample Background Image . 38

20 Base Model (Medium-Sized) Metrics 39

21 Best Detection Model (m-600-8-100) mAP Curve [Primary Dataset] 41

22 Best Detection Model (m-600-8-100) PR Curve [Primary Dataset] . 41

23 Best Detection Model (m-600-8-100) F1 Curve [Primary Dataset] . 41

24 Sample Pig Head and Pig Rear Detection 43

25 Confusion Matrix of The Best Model [Primary Dataset] 45

26 Best Detection Model (m-600-8-100) mAP Curve [Secondary Dataset] 47

27 Best Detection Model (m-600-8-100) PR Curve [Secondary Dataset] 47

28 Best Detection Model (m-600-8-100) F1 Curve [Secondary Dataset] 47

vi

29 Confusion Matrix of The Best Model [Secondary Dataset] 49

30 Summary of m-600-8-100 [Primary Dataset] 50

31 Summary of m-600-8-100 [Secondary Dataset] 50

32 TailSafe Landing Page: Main Section 52

33 TailSafe Landing Page: Upload Section 53

34 TailSafe Landing Page: Upload Section (after uploading) 53

35 TailSafe Image Confirmation Page 54

36 TailSafe Results Page: Without Contact Classification 55

37 TailSafe Results Page: With Contact Classification 56

vii

List of Tables

1 Detection Datasets . 37

2 Interaction Datasets . 38

3 Base Model Results . 39

4 Best Detection Model Results [Primary Dataset] 40

5 Best Interaction Method Results [Primary Dataset] 44

6 Detection Model Results [Secondary Datasets] 46

7 Best Interaction Method Results [Secondary Datasets] 48

8 Best End-to-End Models . 49

9 Detection Method Comparisons (Source: [1]) 51

10 Interaction Method Comparisons 51

11 Detection Model Results [Primary Dataset] @ 50 Epochs 57

12 Detection Model Results [Primary Dataset] @ 100 Epochs 57

13 Interaction s-400-8-50 Results [Primary Dataset] 58

14 Interaction l-400-8-50 Results [Primary Dataset] 59

15 Interaction m-500-8-100 Results [Primary Dataset] 60

16 Interaction m-600-8-100 Results [Primary Dataset] 61

17 Interaction m-600-16-100 Results [Primary Dataset] 62

18 Interaction m-600-8-100 Results [Secondary Dataset] 63

19 Interaction l-400-8-50 Results [Secondary Dataset] 64

20 Interaction m-600-8-100 Results [Secondary (BG) Dataset] 65

21 Interaction l-400-8-50 Results [Secondary (BG) Dataset] 66

viii

I. Introduction

A. Background of the Study

Livestock monitoring is essential in maintaining animal health and welfare. It

is crucial in assessing the performance and growth of animals. Moreover, it also

provides timely feedback regarding animal health to diagnose early and prevent

illness. Present day technology allows for automated monitoring using transpon-

der attachments or invasive equipment attached to livestock for data gathering,

usually for behavioral data [5]. However, with the increasing volume of livestock

and decreasing number of farmers, it remains increasingly difficult to maintain

consistent monitoring, even with existing options for automation.

In order to provide a more proficient way of monitoring livestock, several stud-

ies on camera-based monitoring are being developed. The computer vision ap-

proach becomes the main area of focus to advance livestock monitoring. There

are existing studies regarding movement tracking, weight estimation, thermal anal-

ysis, posture detection, and more that are capable and beneficial for the industry

[5]. This field is now known as Precision Livestock Farming (PLF), which auto-

mates the detection and monitoring of livestock to promote and maintain animal

health and welfare. Additionally, this also includes real-time analysis of sounds

and biological metrics using visual data. Consistency and efficiency in monitoring

are important to farmers because poor health management and presence of dam-

aging behavior (like tail biting) negatively affect the growth of pigs. Consequently,

it also increases production cost where farmers become compelled to spend more

to address these problems - for example needing to buy medication such as an-

tibiotics. In terms of consumers, this is also important as monitoring preserves

product quality and maintains willingness to purchase livestock [5].

Contemporary research shows that the use of pig-related data over a temporal

space evaluates behavioral changes and determines the pig’s state of health and

welfare. In a study conducted by [6], pig behavior is analyzed and classified into

1

various categories, including lying, eating, drinking, walking, and standing. To

track the behavior, multiple object detection techniques using the YOLO algo-

rithm are being employed. The tracking process utilizes the Kuhn-Munkres and

MOSSE algorithms, resulting in an average precision rate of 95%. Behavioral clas-

sifications are accomplished through the use of the ResNet18 model. Long-term

observations in [6] determine patterns such as how ventilation affects drinking fre-

quency, how moving and standing frequencies decrease over time, or how lying

drastically increases as the pigs age.

One of the branches that emerges from the venture into PLF technologies is

pig contact behavior, which can be used as an indicator for changes in a pig’s

physiological status or health status [1]. One study develops the means to auto-

matically detect and quantify pig heads and pig rears using the YOLO algorithm

with ResNet50 as its backbone [1]. It utilizes the bounding boxes created in the

detection method to compute interaction scores and determine the presence of

pig head-to-rear contact. For this method, the average accuracy for detecting

the parts and identifying interaction scores is about 92.56% ± 3.74% confidence.

Upon analysis of the results, it is evident that the occurrence of abnormal behavior,

such as tail biting, affects pig contact behavior. Pigs tend to be contact avoidant

when experiencing discomfort, which is unusual, as pigs are social animals and

inquisitive in nature.

Pig contact behavior plays a vital role in monitoring the well-being and health

of pigs. Automated techniques, such as pig part detection, have been developed

to address this aspect. However, further advancements are needed as there is cur-

rently no consensus on the most effective model for this task, and it is not yet

suitable for commercial implementation. Additionally, challenges remain, includ-

ing occlusions between pigs, camera orientation considerations, and the detection

of abnormal behaviors like flank chewing and ear biting, which require accurate

detection of head-to-flank and head-to-head contact.

2

B. Statement of the Problem

Maintaining profitable pig farms while adhering to animal health and welfare stan-

dards becomes increasingly challenging due to current livestock demands. How-

ever, existing monitoring practices prove inadequate and inefficient in meeting

these demands. The growing gap between the animal-to-staff ratio further com-

plicates matters, rendering expansions and larger scale farming impractical [7].

Consequently, the development of an alternative monitoring tool that is automatic,

low-cost, real-time, and non-contact becomes imperative. Timely monitoring is

particularly crucial in identifying sub-optimal conditions in pigs [5]. Several stud-

ies focus on monitoring pigs using various parameters such as behavior, weight,

and thermal indicators. One such approach is contact behavior monitoring, which

helps identify instances of tail biting. However, research on this type of monitor-

ing for pigs remains limited, resulting in a scarcity of trained models for contact

detection. Therefore, this study aims to identify the optimal model and hyper-

parameters for contact detection. The trained model integrates into a system

designed to serve as a decision support tool for screening pig pens, enabling the

suggestive identification of health-related diseases or abnormal behaviors through

tail biting.

C. Objectives of the Study

The objectives of this study entails evaluating the capability of the YOLOv5 (You

Only Live Once) algorithm in detecting pig heads and pig rears using CSPDark-

net53 as the backbone. Additionally, identifying interactions, or the presence of

head-to-rear contact utilizes pig part detection in pig pen images for the compu-

tation of the part’s Interaction over Union (IoU) that is compared to a calibrated

interaction threshold. Furthermore, developing the web-based system integrates

and implements the detection and interaction methods which farmers can use as a

decision support tool for diagnosing potential pen problems or pig-health related

concerns through tail biting.

3

1. Determining the optimum YOLOv5 model size for detecting pig parts using

Image size [400x400], Batch size [8], and Epochs [50] as base parameters:

(a) YOLOv5s

(b) YOLOv5m

(c) YOLOv5l

2. Determining the optimum hyperparameters for the selected model size that

uses CSPDarknet53 in the YOLOv5 algorithm for detecting pig parts:

(a) Image size (400 x 400, 500 x 500, 600 x 600)

(b) Batch size (8, 16, 32)

(c) Epochs (50, 100)

3. Evaluating the performance of the selected model size and the different hy-

perparameter configurations in the YOLOv5 algorithm for detecting of pig

parts:

(a) Mean Average Precision

(b) Precision-Recall Curve

(c) F1 Curve

4. Extracting the bounding box coordinates from the detected pig parts in pig

pen images and computing each head-to-rear IoU.

5. Determining the optimum image size for detection and IoU interaction thresh-

old for identifying presence of pig head-to-rear contact in pig pen images:

(a) Image size (400, 500, 600)

(b) Interaction Threshold (0.05, 0.07, 0.08, 0.09, 0.1, 0.3, 0.5)

6. Evaluating the performance of the interaction method in identifying pig

head-to-rear contact in pig pen images:

(a) Accuracy

4

(b) Precision

(c) Recall

(d) F1-Score

(e) Normalized Matthew’s Correlation Coefficient

7. Comparing the results of the two best trained models to previous network

architectures for detecting pig head-to-rear contact in [1].

8. Integrating the detection method and interaction method in a simple website

that has the following functionalities:

(a) The user can upload an image

(b) The user can view the results of the processed image.

9. The website displays the following results:

(a) The image with detected head and rear parts with confidence scores for

each

(b) The classification if with head-to-rear contact or without head-to-rear

contact

(c) The number of contact count

10. Applying data augmentation techniques to the dataset to add data variety

for detection training:

(a) Rotation

(b) Horizontal Flip

(c) Crop

(d) Brightness

5

D. Significance of the Project

Pig monitoring is essential for maintaining animal condition and the overall pro-

ductivity of a farm. The responsibility proves difficult because of the growing

gap in ratios between farmers and livestock demand. Moreover, larger farms are

tedious to maintain, especially with a small number of farmers working for them.

The increasing demand for livestock requires farmers to operate at maximum or

higher capacities than manageable. This problem persists with consideration of

existing methods for livestock monitoring, such as the use of pedometer collars, ear

tags, RFID tags, and transponder attachments. An issue with this solution is that

it is invasive in nature, which raises public concerns for animal health and welfare.

Thus, an alternative solution that is more efficient and non-invasive is most desir-

able. This emphasizes the importance of developing Precision Livestock Farming

(PLF), which offers automatic and non-invasive solutions that typically employ

computer vision and deep learning techniques. In PLF, strides have already been

made to advance this objective in terms of measuring behavior, movement, weight,

and more. Interestingly, a branch of this is the study of contact behavior, which

can be indicative of health-related concerns [1]. These solutions are also inexpen-

sive, as they only require low-tech hardware such as simple cameras and do not

need any extra sensors or transponders to be used.

An abnormal behavior that occurs in pig pens is tail biting. This type of

behavior can be indicative of environmental hindrances such as lack of occupation

material, limited feed or water and high stocking density [8]. Another indication of

this type of behavior is possible health-related concerns. Therefore, the presence

of tail biting in a pig pen can serve as evidence for necessary action. With that,

developing a model that can detect the presence and quantify the severity of this

behavior proves to be beneficial to pig monitoring. This is accomplished through

head-to-rear contact detection, which is the model that this study develops. The

web-based system implements this model for the contact presence task which pig

farmers can use as a decision support tool for diagnosing pig pens, and determining

6

necessary actions for preventing pig pen health and welfare deterioration, and

increased production costs.

E. Scope and Limitations

The following are the scope and limitations of this study:

1. Training the models use images sourced from [1], which implies processing

and combining the AUF and AFBI datasets.

2. Selecting the optimum YOLOv5 model size for detecting pig parts using the

base parameters is constrained to the following set of sizes:

(a) YOLOv5s

(b) YOLOv5m

(c) YOLOv5l

3. Selecting the optimum hyperparameters for the selected model size that uses

CSPDarknet53 in the YOLOv5 algorithm for detecting pig parts is limited

to the following hyperparameters:

(a) Image size (400 x 400, 500 x 500, 600 x 600)

(b) Batch size (8, 16, 32)

(c) Epochs (50, 100)

4. Selecting the optimum image size for detection and IoU interaction threshold

for identifying presence of pig head-to-rear contact in pig pen images is

limited to the following parameters:

(a) Image size (400, 500, 600)

(b) Interaction Threshold (0.05, 0.07, 0.08, 0.09, 0.1, 0.3, 0.5)

5. Performance comparisons for detecting pig head-to-rear contact with models

in [1] is only conducted for the two best trained models.

7

6. The study only utilizes and tests the effects of the following data augmen-

tation techniques:

(a) Rotation

(b) Horizontal Flip

(c) Crop

(d) Brightness

7. The website application has the following limitations:

(a) It only accepts PNG, and JPEG images as input.

(b) It only accepts file sizes up to 5MB.

(c) It only processes a single image at a time.

(d) It does not indicate where in the image the interaction occurred.

(e) Uploaded images does not persist in the system, and has to be reu-

ploaded for redetection.

F. Assumptions

1. The system is used only as a decision support tool to assist in diagnosing for

potential pen problems, pig health-related concerns, or tail biting outbreaks.

2. The user of the web application has the proper training and knowledge to

analyze and understand the output results of the system.

3. The uploaded image is preprocessed into the acceptable format.

4. The uploaded image is a pig pen image.

8

II. Review of Related Literature

A. Precision Livestock Farming Significance

With the influx of demands for livestock production, jointly, interests in advance-

ments of precision livestock farming (PLF) becomes progressively relevant. The

object of discussion lies in the development of practices for modern pig farming.

For practical and commercially available applications, there are automations on

environmental temperature, airflow, supply of feed and water, and waste removal

[6]. Moreover, methods for monitoring are also currently being used in the field

such as RFIDs, ear tags, manual marking, CCTV (manual surveillance), and so

on. However, these methods are not well-suited for larger scale commercial farms

because the complexity for monitoring is directly proportional to the scale. In

a sense, larger scale commercial farms become impractical without monitoring

automation because of the animal-to-staff ratio [7].

The main concern with current practices is that it is ineffective for scaling

farms due to requirement of manual labor, and it is invasive in nature. The value

in PLF is that it accomplishes automatic real-time monitoring and diminishes hu-

man and animal interaction [5]. Livestock interaction and invasive methods might

cause unnecessary stress, specially with unfamiliar situations. Additionally, it can

also cause inaccurate monitoring due to changes in behavior caused by interac-

tion which propagates cost. Proper monitoring is crucial in farm supervision and

maintenance. Having PLF provides economic solutions and maintains livestock

health and welfare.

In that regard, further investigations on PLF are of interest. Previous work

on pig monitoring, specific to behavioral analysis, contact behavior, and posture

recognition, have been considered. This study focuses on contact detection and

contact behavior of pigs utilizing CNNs.

9

B. Behavioral Analysis

Pig diurnal activity can reveal state of health and welfare [6]. Assessment of long-

term trends and deviations can serve as indicators for determining pig status.

The suggested pipeline to extract long-term behavior changes in pigs is through

detection, tracking and behavior classification [6]. The behavior classifications

observed in the study are lying, eating, drinking, walking, and standing. This

study uses video data of growing pigs recorded only during the daytime. Multiple

object detection is conducted with the use of YOLOv3 that is pre- trained over

the ImageNet dataset, and then fine-tuned for pig detection. For tracking, Kuhn-

Munkres algorithm and MOSSE algorithm is utilized. The associations in the

annotated bounding boxes are defined as tracklets and is used for the tracking

stage. Finally, classifying the bounding boxes into behavior is left to ResNet18.

For classification, the centroid location is used for identifying movement, while

orientations relative to the feeder and water supply are used for consumption

classifications. The computed average precision for detection is 95%. However,

the average accuracy for individual frame-level label is only at 73%. Despite this,

collective behavior statistics suggests that this is still accurate as the ground-

truth and predicted behaviors have similar distributions with KL divergence value

of 0.014 and average global prediction error of 0.14. In that sense, individual errors

cancel out and return an accurate collective statistic [6]. Observations also led to

recognizing that eating and drinking only occur 10% of the time and that active

behavior are more common for earlier ages. Hence, older members accustomed to

the environment tend to have extended lying behavior. Nonetheless, for detection,

the study is limited, though having high accuracy. Due to pig’s social behavior,

where herds tend to stick closely together under normal circumstances, there were

cases where the bounding boxes would count two pigs. The researchers recommend

using ellipses because of its closeness to a pig’s natural shape for detection ground-

truth which might be more effective.

Farm or pen environment heavily influences pig behavior [9]. This was tested

10

on four different treatments: (1) temperature, (2) relative humidity, (3) volatile

organic compounds (VOC), (4) illuminance. Under varying levels of these treat-

ments, pigs were observed for feed intake, standing, lying, sitting, drinking, root-

ing, posture transitions, wallowing and biting for behavioral changes. This study

utilized a general linear model using IBM SPSS statistic v.25 and Tukey’s honest

significance difference to determine how the relationship between the treatments

and behaviors. In terms of temperature changes, pigs tend to stand longer on

lower temperatures and lie longer when it is hotter. Moreover, pigs tend to drink

more for higher temperatures. For humidity, it is directly proportional to the be-

haviors rooting and wallowing. VOC did not seem to have significance over pig

behavior. Lastly, with low illuminance the pigs tend to lie longer and shorter with

high illuminance. A limitation of this study is that gathering the observations

and time were not automated. However, while this is the case, it gives an under-

standing of how the environment affects changes in pig behavior which is crucial

for analysis and controlling independents.

Significant to behavioral analysis of livestock is identification, to generalize

individualizing pigs with consideration of different circumstances such as age and

environment. The use of individual detection and tracking in a pen was tested

on different ages (young and old) of pigs and different environments (enriched

and barren) [10]. The typical models for detection and tracking were used in this

work, YOLOv3 and SORT. SORT was chosen for the use Hungarian algorithm

and Kalman filter. The Hungarian algorithm was used to predict and detect the

current frame and its relation to the previous adjacent frame. The Kalman filter is

used to predict the future positions of bounding boxes (usually to compensate for

occlusions). Additionally, the IoU score was used to check for overlaps between

bounding boxes to say if the current and previous should be the same object.

In cases that the bounding boxes generated do not identify pig, there are extra

IDs generated or cases of false positives, these were filtered and removed to boost

the detection and tracking process. Unfortunately, there needs to be a human

11

observer who reassigns the trajectory of the ID when the trajectory is lost [10].

In this study, finisher pig performed better than nursery pig. Additionally, the

finisher pig were also better for barren environment because of the unoccupancy

of surface in pens [10].

C. Pig Detection

Figure 1: Interaction Scoring Sample [1]

An area of concern is pig contact behavior. Naturally, pigs engage in frequent

contact, specially in better conditions [1]. Decrease in frequency and duration

of contact can serve as indicators for changes in physiological or health status,

which might lead to abnormal behaviors such as tail biting [1]. An automatic

method for quantifying pig head and pig rear is accomplished using YOLO with

ResNet50 as the backbone. This model is accompanied by K-means clustering

to define anchor boxes to capture the head and rear accurately. Moreover, there

are two additional sub-networks in the model to detect smaller and larger parts,

for size differences that distance creates. To observe interactions, the Interaction

over Union (IoU) between the detected head and rear is computed for an inter-

action score [1]. This method is computationally inexpensive when compared to

recurrent neural networks. Together with this, using the interaction threshold

calibration (ITC) an interaction threshold is pre-calibrated to identify if there are

interactions. Observations used in this study are those that are 3 days before a

tail-biting outbreak, as annotated by an animal behavior scientist. The interac-

12

tion score average accuracy is 92.56% ± 3.74%. It was observed that there is a

decrease in contact during the outbreak, suggesting contact-avoidance behavior

when experiencing discomfort. The model is affected by higher number of inter-

actions because of pig-to-pig occlusions, and camera orientation. The study can

be extended to observe head-to-head or head-to-flank contact for other abnormal

behaviors such as flank chewing [1].

Figure 2: YOLO with ResNet50 Backbone and Sub-Networks [1]

Posture and locomotion activity detection, and tracking algorithms for the

purpose of pig monitoring has been an object of interest for several studies. Com-

monly, the convolutional neural networks YOLO and Faster R-CNN has been used

for pig detection [7]. In terms of tracking objects, a model commonly used for this

task is the Simple Online and Realtime Tracking (SORT). For monitoring pig

physico-temporal activities in different greenhouse gas concentrations, these mod-

els were utilized to understand behavioral changes in experimental environments.

With specifics, for detection YOLOv4 and Faster R-CNN with ResNet50 as the

backbone, and for tracking Deep-SORT. The work uses IoU to measure bounding

box accuracy in the model. In cases of missing locations, the Kalman filter is used

to estimate and provide corrections. The models for detection and tracking are

13

modeled separately and combined into a end-to-end pig posture scoring model. In

using Faster R-CNN, for lateral lying, sternal lying, standing posture, the follow-

ing mean average precision (mAP) are 97.21%, 96.83%, and 95.23% respectively.

Additionally, the multi-object tracking accuracy (MOTA) is 93.86% and the multi-

object tracking precision (MOTP) is 82.41%. On the other hand, YOLOv4 has

mAP, in the same order, 98.52%, 98.33% and 99.18% with 93.31% MOTA and

81.23% MOTP. In this case, it would seem that YOLOv4 is a better model to use

for detection. To support this further in [11] it is observed that Faster R-CNN

are affected by occlusions more which means that the YOLO architecture is more

robust for this use-case.

Posture recognition is an essential part of behavior analysis as it is utilized in

studying pig behavior using image data or video data. The posture classifications

of interest in [12] are standing, lying on stomach, lying on the side, and exploring.

In [12] YOLOv5 is used as the detection network for pigs, it was chosen over the

other versions of YOLO due to its improved speed and accuracy over the previous

models. In conjunction, the DeepLabv3+ extraction network is used for the task

of segmentation, with pre-trained weights ResNet, Xception and MobileNet. The

goal is to extract the key frames from images, detect pigs, extract contours, and

classify the posture [12]. This model achieved 92.45% accuracy for classifying

behavior. The following measures were used to determine the effectiveness of the

DeepLabv3+: mean IoU (MIoU) on Pascal VOC at 89% and Cityscape at 82.1%.

The highest semantic-segmentation accuracy result was with the use of ResNet101

at 92.45% and classification accuracy for postures of 92.26%. The use of semantic

segmentations provided more accurate detection because it effectively removed

the background - it also helped for multi-target recognition. However, this study

was conducted on only one observation angle which limits classification on non-

favorable orientations. Moreover, movement classifications are difficult as images

are static.

A lightweight convolutional neural network was developed for posture detection

14

of individual pigs called Light-SPD-YOLO. Important in this task are the low-level

feature information, which is used for posture location, which is maintained in this

model using feature fusion. Moreover, the model also uses a compression block

ShuffleNetV2 and ECA-Net for parameter reduction. In light weight models, one

of the main problems is feature loss which is mitigated with the use of ECA-Net. In

turn, the dimensionality reduction operation should not prevent the feature learn-

ing [13]. The optimal parameters were obtained using YOLOv5’s hyperparameter

evolution that evaluates cost of fitness; pre-trained using COCO hyperparameters

list. This was compared to the following models R-CNN ResNet50, YOLOv3 Dark-

net53, YOLOv5 Darknet53, YOLOv5 MobileNetv3-Large YOLOv5 MobileNetv3-

Small. Upon testing, the average precision of the model for standing, lying on

belly, lying on side, sitting, and mounting are 97.7%, 95.2%, 95.7%, 87.5%, and

84.1% respectively. Additionally, the speed of inference for this model is around

63ms. In comparison to the other existing models, the proposed lightweight model

performs significantly well with minimal parameters needed. However, a limit to

this model, as well as the previous models, is that it still has performance degra-

dation for high-level behaviors such as mounting and exploring – typically this is

explained by its temporal and spatial requirements [13]. There are also possible

improvements on handling occlusions, specially for scaling farms, and illumina-

tions which can be resolved by depth.

Another approach in pig detection used in [14] is through using a CNN-based

detector and correlation filter-based tracker through a hierarchical data associa-

tion algorithm. The tracking targets here are called tag-boxes. Alongside this,

multiple object tracking is also implemented using key-points learning using cor-

relation filters. The data association algorithm refines the detection hypothesis.

In the case that tracks drift, it is corrected by probing the tracking failure and re-

initializing the tracking [14]. With this, optimal trackers improve with the refined

detections, while the tracking fragments integrated into their respective tracks and

maintain identifications. Interestingly, this method does not need manual mark-

15

ing or physically identifying the pigs. However, this study is subject to effects of

illumination, similar pig appearance, shape deformation and occlusions [14].

D. Synthesis

The relevance of PLF is increasing due to the growing demand of livestock produc-

tion. Currently in the industry there are existing methods for monitoring such as

RFIDs, ear tags, and CCTV which are not well-suited for larger scale commercial

farms. The main advantage of employing PLF is that it allows automatic real-time

monitoring, hence reducing the need for manual labor and minimizing human and

animal interaction. This study focuses on using CNNs and IoU computations for

head-to-rear contact detection as a step towards improving the efficiency of pig

farming and welfare of pigs.

Discussed here are various methods of analyzing pig behavior in a farm setting.

This is conducted using image and video data, and utilizing computer vision tech-

niques and algorithms such as YOLO and deep learning architectures. Advances

in classifying pig activity, effects of environmental factors such as temperature,

humidity, and light, and pig identification are common studies that answer to

this problem. Behavioral analysis is crucial in understanding how external factors

such as the environment and changes in pig diurnal activity affects their welfare.

Monitoring the behavior of pigs can provide useful information about their health

and welfare, and as seen in previous work, the automation of these methods can

improve the efficiency of this task.

Monitoring pig activity relies heavily on the accuracy of the detection method

being used may it be for behavior classification, posture detection, or contact

behavior tasks.

16

III. Theoretical Framework

A. Tail Biting

Pigs are known to be inquisitive in nature, often they would use their mouths to

investigate the environment and have the natural tendency to chew [8]. This be-

havior can lead the pigs to exhibit signs of tail biting. The act can commonly occur

when the environment does not allow the pigs to explore and be kept occupied

through other means. There are several causes to tail biting such as lack of oc-

cupation material, limited feed or water, feed composition, high stocking density,

environment, weather changes, genetic disposition, and health-related problems;

therefore, tail biting could be used as an indicator for hindrances to maintain

livestock health and welfare.

There are three known forms of tail biting. The first is due to limits in occu-

pancy where the environment invites the pig’s inquisitive nature to chew on other

pig’s tails because of frequent and extended contact of the head and rear. The

second is due to competition in the pen, often caused by inadequacy of the feeder

for the pig population. Factors like this cause aggression between pigs which leads

to tail biting. The third is due to a single pig being a fanatical bitter which creates

stress in the pen and might extend tail biting behavior to other pigs; therefore,

these pigs must be separated immediately.

B. Convolutional Neural Network

A neural network is a composition of an input layer, one or more hidden layers,

and an output layer. Each node in this network connects to another and is as-

sociated with specific weights and thresholds. Outputs that exceed the threshold

value activates the node and sends data to the next layer of the network. Convo-

lutional Neural Networks (CNN) is an extension of this architecture that provides

an approach for image processing and object recognition using pixel data from

image or video data. The CNN layers can extract simple features initially, such

17

as colors and edges, and is progressively able to recognize complex features to

identify target objects. The CNN has three main layers [15]:

1. Convolution Layer

The core building block of a CNN is the convolution layer where most of the

network’s computation occurs. This layer consists of a few necessary components

being the input data, a kernel or filter and a feature map [15]. The kernel is an

array of weights used to represent parts of an image. The usual size of a kernel

matrix is 3x3, 5x5 or 7x7, and is applied to areas of the image; this also determines

the receptive field. After applying the kernel, the dot product of the input pixels

within the area of the image and the kernel is calculated to produce the output

array, which is also called the feature map. This process is done repeatedly,

across the image, to get the entire feature map relative to the input data. In

order to process the entire image, the kernel is shifted by a stride, which is the

distance between the previous and successive kernel. However, shifting the kernel

by stride does not guarantee that it will always fit the input data, which causes

an inconsistency in the input and output matrix sizes. Hence, padding is applied

to avoid this and produce larger or equally sized outputs.

2. Pooling Layer

The function of a pooling layer, essentially, is for downsampling. It is used for

dimensionality reduction and reducing parameters in the input [15]. In terms of

process, it conducts similar to the convolution layer, however without inclusion of

weights in the kernel. Alternatively, it aggregates the area of the image currently

being processed which would be the output. This helps reduce the spatial size of

the feature map, in turn, reducing complexity, training time and risk of overfitting

of the model. There are two types of pooling which are: max pooling which selects

the maximum value and average pooling which calculates the average value in the

receptive field.

18

3. Fully Connected Layer

The function of a fully connected layer is to conduct the classification task using

the features extracted from the previous layers. This layer connects nodes of the

output layer directly to the previous layer, in turn flattening it or compiling the

extracted data to form a final output.

C. Detection Method

1. YOLO Algortihm

The YOLO (You-Only-Look-Once) algorithm is a real-time object detection al-

gorithm. As the name suggests, this algorithm can detect objects with a single

forward propagation and only requires a single CNN to perform its function [16].

It is a multi-scale network that combines a feature extraction network and a de-

tection network to generate predictions. The feature extraction network that uses

a CNN architecture divides the image into a grid of cells. With this, it is able to

predict the probability of the presence of an object in the cell divisions. The de-

tection network uses these predictions to produce labeled bounding boxes that can

be used to locate the coordinates of objects in the image. The class probabilities

and bounding boxes are computed simultaneously allowing for the model to detect

numerous objects in images with high speed and precision making it suitable for

real-time applications [17]. This algorithm makes use of three important concepts

which are residual blocks, bounding box regression, and IoU.

This study implements and tests the YOLOv5 algorithm for object detection

of pig parts, specifically locating the pig head and rear of pigs in pig pen images.

Locating these parts accurately are crucial in determining the head-to-rear contact

presence, and possibility of tail biting behavior. The YOLO algorithm uses CSP-

Darknet53 as the backbone network, which is the algorithm’s default backbone

[4]. Additionally, it also utilizes the distance metric of IoU, which is a standard

for YOLO algorithms [17].

19

2. YOLOv5

YOLOv5, developed by Glenn Jocher, CEO of Ultralytics in 2020 [18], has emerged

as a prominent and highly effective solution for object detection tasks. Building

upon the success of its predecessors, YOLOv5 introduces several advancements

aimed at improving the accuracy and speed of real-time object detection. No-

tably, compared to YOLOv4, YOLOv5 offers faster training and inference times

while maintaining the same mean average precision (mAP) [4] [19]. Further-

more, YOLOv5 stands out for its lightweight architecture and smaller model size

compared to similar counterparts. This algorithm has demonstrated exceptional

performance across diverse domains, including but not limited to person detec-

tion, vehicle detection, and animal detection. Its remarkable achievements make

YOLOv5 a valuable tool for researchers and practitioners seeking efficient and

accurate object detection capabilities in various applications.

Ultralytics is dedicated to continuously enhancing the YOLO model through

their ongoing releases [20]. The YOLOv5 model, being open source and actively

maintained in a GitHub repository [2], offers the advantage of easy replication and

modification to suit specific needs and applications.

Figure 3: YOLOv5 Model Sizes Comparison [2]

The YOLOv5 algorithm offers various model sizes, allowing flexibility and cus-

tomization to meet specific requirements. The different sizes of YOLOv5, namely

YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, represent a trade-

20

Figure 4: YOLOv5 Model Sizes [3]

off between model complexity, inference speed, and accuracy. YOLOv5n and

YOLOv5s are smallest variants, featuring a lightweight architecture with fewer

parameters, resulting in faster inference times but potentially sacrificing some

detection accuracy. YOLOv5m strikes a balance between size and performance,

offering moderate model complexity and achieving a reasonable trade-off between

speed and accuracy. YOLOv5l and YOLOv5x are larger models, featuring in-

creased network depth and capacity, which can yield higher accuracy but with

slower inference times due to the additional computational requirements. The

availability of different model sizes empowers users to choose the most suitable

configuration based on their specific application needs, striking a balance between

computational efficiency and detection performance.

3. Training YOLOv5

In the Ultralytics website, there are several best practices recommended to opti-

mize training for YOLOv5. Firstly, it is advised to have a dataset with a mini-

mum of 1500 images per class and at least 10,000 labeled instances per class to

ensure sufficient training data. The dataset should also encompass image vari-

ety, including different times of day, seasons, weather conditions, lighting, angles,

and sources. Labeling consistency and accuracy are crucial, with all instances of

all classes correctly labeled and closely enclosed within their respective bounding

boxes. Verifying labels by inspecting train batch images at the start of training

is also suggested. Background images, which contain no objects, can be added to

21

the dataset to reduce false positives. The choice of model size should be tested

to determine the most suitable one for the specific use case. During training,

it is advisable to start with 300 epochs and adjust based on early overfitting.

Higher image resolutions, such as 1280, can benefit datasets with small objects.

The batch size should be maximized within hardware limits to avoid poor batch-

norm statistics. Default hyperparameters should be used initially, and increasing

augmentation hyperparameters can help reduce overfitting. The reduction of loss

component gain hyperparameters can also mitigate overfitting. For automated hy-

perparameter optimization, the Hyperparameter Evolution can be utilized. More

details on optimizing train can be found in [3].

4. YOLOv5 Architecture

Figure 5: YOLOv5 Network Architecture [4]

CSP-Darknet53 serves as the backbone for YOLOv5, derived from Darknet53,

which was the backbone for YOLOv3. The authors of YOLOv5 introduced the

Cross Stage Partial (CSP) network strategy to enhance its performance. This

strategy addresses the issue of redundant gradients in deep networks by truncating

the gradient flow. By partitioning the feature map of the base layer and merging

22

it through a cross-stage hierarchy using the BottleNeckCSP module, YOLOv5 ef-

fectively reduces the number of parameters and computational requirements while

increasing inference speed. This improvement in efficiency plays a crucial role

in real-time object detection models, making YOLOv5 a powerful and efficient

solution [4].

The neck of YOLOv5 incorporates two key changes. It utilizes a variant of Spa-

tial Pyramid Pooling (SPP) to aggregate information and increase the receptive

field without compromising network speed. Additionally, the Path Aggregation

Network (PANet) is modified by integrating the BottleNeckCSP module, which

applies the Cross Stage Partial (CSP) network strategy. This modification im-

proves information flow, aids in accurate pixel localization for mask prediction,

and enhances the overall performance of YOLOv5 [4].

In terms of the network’s components, YOLOv5 maintains the same head

structure as its predecessors, YOLOv3 and YOLOv4. This head consists of three

convolution layers responsible for predicting bounding box coordinates, object

scores, and object classes. Notably, the computation of target bounding box

coordinates has been updated in YOLOv5, introducing differences from previous

versions. Activation functions play a crucial role, and YOLOv5 employs SiLU

(Sigmoid Linear Unit) and Sigmoid activations. SiLU is used in hidden layers to

improve convolution operations, while Sigmoid is employed in the output layer [4].

Regarding the loss function, YOLOv5 utilizes Binary Cross Entropy (BCE)

loss for class and objectness predictions, as well as Complete Intersection over

Union (CIoU) loss for accurate location predictions [4]. The final loss is computed

based on a specific equation. These components collectively contribute to the

improved accuracy and performance of YOLOv5 in object detection tasks.

D. Interaction Method

The interaction method is conducted by computation of the IoU of the bounding

boxes (Bbox) from the detected pig heads and pig rears and then comparing it

23

with the calibrated IoU interaction threshold. The IoU computation sums to

getting the absolute value of the intersection between Bboxes over its union (see

Figure 6). The IoU interaction threshold is calibrated through comparison of

model performance using interaction metrics for different configurations over the

interaction dataset. Head-to-rear IoU scores that are greater than or equal to the

threshold is classified as with contact, otherwise without contact.

Figure 6: IoU formula [1]

E. Data Augmentation

The study applies the following image augmentation techniques to the dataset to

simulate similar circumstances in pig pens. Data augmentations are conducted in

Roboflow [21]:

1. Spatial Augmentation

1. Rotation. The image is rotated both clockwise (CW) and counter-clockwise(C-

CW) by 90°, as well as within a range of ±35°. Each rotation produces a

distinct image with unique characteristics.

2. Horizontal Flipping. The image is horizontally flipped, creating a mir-

rored version that retains its key features and characteristics.

3. Crop. The image is cropped to a minimum and maximum zoom range of

0-50%, capturing a smaller portion with enlarged and focused details.

2. Pixel Augmentation

1. Brightness. The image brightness is increased or decreased by the within

the range of ± 20%, where each adjustment creates a unique image.

24

(a) Before Rotation (b) Rotated 90◦ CW (c) Rotated 90◦ C-CW

Figure 7: Spatial Augmentation: 90◦ Rotations

(a) Before Rotation (b) Positive Rotation (c) Negative Rotation

Figure 8: Spatial Augmentation: ± 0-35◦ Rotations

(a) Before Flipping (b) After Flipping

Figure 9: Spatial Augmentation: Horizontal Flipping

(a) Cropped Sample 1 (b) Cropped Sample 2

Figure 10: Spatial Augmentation: Crop

(a) Brightness to +20% (b) Original Image (c) Brightness to −20%

Figure 11: Pixel Augmentation: Brightness

25

F. Detection Performance Metrics

1. Mean Average Precision (mAP). This metric is commonly used for

evaluating the performance of object detection models and is the main metric

for the detection method. It is calculated by finding the average precision

of each object class and then taking the mean of those values. The higher

the mAP score, the better it is at detecting objects of different classes in

an image and determining their locations. This metric also uses an IoU

threshold usually set at 0.5, however, there are instances where ranges of

IoU are observed such as from 0.5 to 0.95 denoted as mAP@0.5:0.95.

mAP =

∑C
n=i APi

C

(a) C is the number of object classes

(b) APi is the average precision for the class

Figure 12: Sample mAP Curve Graph

2. Precision-Recall Curve (PR Curve). The PR curve is a graphical rep-

resentation of the trade-off between precision and recall. It is generated by

plotting the precision (y-axis) and the recall (x-axis) at different threshold

settings. The area under the PR curve (AUC-PR) is a metric that ranges

from 0 to 1 used to evaluate the performance of object detection models.

26

3. F1 Curve. The F1 curve summarizes the balance between precision and re-

call in a concise graphical form. By plotting the F1 score (y-axis) against dif-

ferent threshold settings or decision boundaries (x-axis), the curve showcases

the model’s performance across the range of possible classification thresh-

olds. The F1 score is a single metric that captures the harmonic mean of

precision and recall, providing an overall assessment of the model’s effective-

ness in object detection tasks.

(a) Sample PR Curve Graph (b) Sample F1 Curve Graph

Figure 13: Detection Metrics

G. Interaction Performance Metrics

1. Confusion Matrix

A confusion matrix is an N x N matrix, where N is the number of classes, used to

evaluate the performance of classifiers. It compares over the actual classification

(known as the true class) and the classification predicted by the model. This ma-

trix is sub-divided into four individual components used to define the classification

measures [22]:

1. True Positive (TP). A true positive defines an outcome where the model

predicts the true positive class correctly.

2. True Negative (TN). A true negative defines an outcome where the model

predicts the true negative class correctly.

3. False Positive (FP). A false positive defines an outcome where the model

27

predicts positive when it belongs to the true negative class. It is an incorrect

classification.

4. False Negative (FN). A false negative defines an outcome where the model

predicts negative when it belongs to the true positive class. It is an incorrect

classification.

2. Classification Measure

1. Accuracy. This metric measures the rate at which the classifier makes a

correct prediction. Therefore, it is the ratio of the correct predictions over

the total number of predictions.

Accuracy =
TP + TN

TP + TN + FP + FN

2. Precision. This metric measures the rate of correct positive predictions in

terms of the total positive predictions. Therefore, it is the ratio of the true

positive over predicted positives.

Precision =
TP

TP + FP

3. Recall. This metric measures the rate of correct positive predictions in

terms of the true positive class. Therefore, it is the ratio of the true positive

over the actual positives. This is also known as the “true positive rate” or

“sensitivity.”

Recall =
TP

TP + FN

4. F1-Score. This metric is the harmonic mean of precision and recall which

provides a scale that maintains the balance between these two classification

measures.

F1− Score =
2 ∗ Precision ∗Recall

Precision+Recall

28

5. Normalized Matthew’s Correlation Coefficient (nMCC). This met-

ric that encapsulates the balance between true positives, true negatives,

false positives, and false negatives. It offers a scaled evaluation of the over-

all classification performance, considering the distribution of all prediction

outcomes. The MCC by itself ranges from [−1, 1] to measure agreement be-

tween the predicted and actual values, it is normalized to adjust the range

to [0, 1]. This is the main metric to decide the best interaction threshold.

MCC =
TN × TP − FN × FP√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

nMCC =
MCC + 1

2

29

IV. Design and Implementation

A. Pig Tail Biting Dataset

The dataset being used in this study is acquired from the research conducted by

[1]. on pig contact behavior. This dataset is a combination of selected images

from two video datasets: AFBI and AUF. The AFBI dataset was obtained from

an experiment conducted at the Agri-Food and Biosciences Institute in Northern

Ireland. The videos were captured in a controlled environment with maintained

ventilation, artificial lighting, and daily health checks. The selected images from

AFBI dataset have a resolution of 765 x 432 pixels. On the other hand, the

AUF dataset was obtained from an experiment conducted at the Department of

Animal Science, Aarhus University in Denmark. The data involved finisher pigs

in a controlled environment with different treatments applied to the pens. These

treatments include variations in tail docking, provision of straw, and stocking den-

sity, aimed at assessing risk factors for tail biting. The selected images from the

AUF dataset have a resolution of 689 x 474 pixels. Both datasets were manu-

ally annotated by two trained individuals with a background in animal behavior,

specifically for the head and rear parts of the pigs. Additionally, another dataset

was created for validation of interactions, which consists of images from both base

datasets. This validation dataset was annotated by an animal behavior scientist,

assigning an interaction score to each image. The images in the validation dataset

were classified into categories of ”(0) no contact,” ”1 contact,” ”2 contacts,” or ”3

or more contacts.”

B. Research Approach

This study takes an exploratory approach to determine the optimal YOLO model

size and training hyperparameters for detecting head-to-rear contact in pen im-

ages using the YOLOv5 algorithm with CSPDarknet53 as the backbone. The max

number of epochs being tested is 50 and 100. The image size also varies from 400

30

x 400, 500 x 500, and 600 x 600 pixels. The parameter batch size is manipu-

lated by batches of 8, 16, and 32. Other hyperparameters for training are being

kept the same and constant as employed in [1] as these are also standard values

used in previous studies on pig detection. The learning rate is being retained at

1x10−3. Moreover, the overlap threshold is also being retained at 0.5, which has

been established in [1]. Data augmentation techniques are being applied to the de-

tection dataset to increase the variety of the dataset and improve the performance

of the model for general purposes. The following data augmentation techniques

are: rotations, horizontal flipping, cropping, and brightness. The IoU between the

head and rear of pigs detected by the algorithm is integral in determining contact

between pigs. Indication of contact is determined using an interaction threshold

that is being calibrated using a held-out dataset from the annotated interaction

dataset. IoU that exceeds the interaction threshold is indicative of interaction

between pigs. Performance evaluations of the detection method using YOLOv5 is

facilitated by using mAP, PR curve, and F1 Score as metrics. For the interaction

method, prediction evaluations are faciliated by using the confusion matrix, and

metrics such as accuracy, precision, recall, F1-score, and nMCC. The model con-

figuration that outputs the best results in the detection method and interaction

method metrics is the optimum model for pig part detection.

C. Use Cases

The website application, TailSafe, integrates the optimum model chosen from

model performance evaluations. This application is capable of detecting head-

to-rear contact between pigs in a given pig pen image. The target users of this

application are pig farmers. The pig farmer can upload pig pen images to the

system, which are processed to determine the presence of head-to-rear contact,

classified as with contact or without contact. Furthermore, the system also pro-

vides information on how many times contact occurs in the uploaded image. A

use case diagram of this system is shown below:

31

Figure 14: Use Case Diagram of TailSafe

D. Technical Architecture

The main programming language being used to develop and implement the de-

tection and interaction method is Python. The models and methods are run in

Google Colab. To support faster training times and heavier training workloads,

GPU accelerated runtimes in Colab Pro are being used. The available GPUs in

Colab Pro include Nvidia T4, V100, or A100 Tensor Core with high-ram configu-

rations. The development of the methods are with support of open-source libraries

available to Python such as PyTorch and TensorFlow. PyTorch is a deep learning

framework that provides a flexible and efficient platform for building and training

neural networks. This library also supports the object detection model YOLOv5.

With that, the researcher leverages the combination of this framework and model

support to build, train, and test for this model. TensorFlow is a machine learn-

ing and deep learning library developed by Google. This library and its set of

tools are useful for metric outputs leveraging the TensorBoard. The main compo-

32

nents and utilities for YOLOv5 are available at the Ultralytics Github repository

in [2] which is being used in this study. Modifications to the YOLOv5 resource

are being made, especially for model configurations, to suit the specific detection

task. When it comes to the datasets, all data preprocessing, compiling, splitting,

annotation, and augmentation tasks are being handled in Roboflow.

Development and implementation of the website application are being con-

ducted in Python using the Django framework. Django is a free and open-source

web framework that follows the Model-View-Controller architecture and features

intelligent development capabilities for building website applications.

Figure 15: Detection Method Training Pipeline

33

Figure 16: Interaction Method Training Pipeline

34

Figure 17: Data Processing Pipeline: Detection Dataset

Figure 18: Data Processing Pipeline: Interaction Dataset

35

V. Results

A. Dataset

The dataset utilized in this research study was obtained from a readily available

source, from [1]’s research on pig contact behavior. The dataset consists of com-

bined images from two sources, namely the AFBI and AUF datasets as previously

mentioned.

Regarding the detection dataset, the AFBI dataset comprises 1,556 pig pen

images with a resolution of 765 x 432, while the AUF dataset contains 1,225 pig

pen images with a resolution of 689 x 464. After application of data augmentations,

the detection dataset used in [1] consisted of a total of 51,193 instances, combining

26,533 instances from AFBI and 24,660 instances from AUF. It is worth noting

that these datasets were captured from different pens on the farm, resulting in

varying pig quantities per pen. The specific number of pig heads or pig rears

per image was not mentioned. For this study, the non-augmented dataset was

used, which also includes annotations for pig head and pig rear in COCO, CSV,

TFRecord, and VOC formats, with the COCO format being utilized in this study.

Furthermore, there was another dataset created from combining the AFBI and

AUF datasets, comprising 433 images from AFBI and 305 images from AUF, re-

sulting in a total of 738 images. This interaction dataset contains annotations

related to the count of pig tail biting within the pens. Each image was classified

into four categories: (0) no contact, 1 contact, 2 contacts, or 3 or more contacts.

Notably, the AUF dataset only had a few instances with three or more contacts,

which prompted the combination of datasets to achieve a more balanced distri-

bution of classes [1]. Despite this approach, the classification of the dataset still

remains imbalanced (refer to Table 2). Majority of images in the dataset depict

instances without any contact, significantly outnumbering the images that capture

contact between pigs.

36

B. Data Processing

In this research, the non-augmented data and COCO annotations were uploaded to

Roboflow (see [21]) for data processing. The dataset was processed using the gen-

erate function in Roboflow, and no data preprocessing was applied. The dataset

was then split into a 70-15-15 ratio without any further modifications. In the data

augmentation phase, several techniques were utilized, including rotation by 90◦,

rotation by ± 35◦, horizontal flip, cropping between 0% and 50%, and brightness

adjustment of ± 20%. These techniques were applied to generate a new dataset

specifically for training the detection model. This dataset is referred to as ”Pri-

mary” in Table 1, and served as the primary dataset for training in this study.

After generation, the dataset was exported from Roboflow in YOLOv5 PyTorch

format to follow compatibility with YOLOv5 training and detection.

Image Count of Detection Datasets

Dataset Split Train Valid Test Total

Original [1] 90-10-00 2502 0 279 2781

Original (BG) 80-20-00 2446 610 0 3056

Primary 70-15-15 5847 417 417 6681

Secondary 80-20-00 6684 555 0 7239

Secondary (BG) 80-20-00 7338 610 0 7948

Table 1: Detection Datasets

In the table provided, there are datasets labeled ”Original” that consist of non-

augmented images from [1]. To improve the model’s performance, a new dataset

was created by combining background images, as suggested in [3]. This dataset,

labeled ”Original (BG),” includes backgrounds. The ”Secondary” dataset used

the Original dataset and is split to 80-20, which considers the interaction dataset

as a separate test set for the detection model. Similarly, the ”Secondary (BG)”

dataset, derived from the Original (BG) dataset, was also split 80-20. These

dataset configurations focused on the exploration of different data compositions

37

and its effects on the model’s performance. In the Split section of the table, the

order is as follows: train, valid, and test splits. If there are only two values present

in the Split section, it indicates that the dataset does not include a separate test

split.

Figure 19: Sample Background Image

For the interaction dataset, the AUF and AFBI sets were combined into one

whole dataset called ”Combined” which was used for the interaction method to

compute for IoU scores and identify contact presence.

Interaction Dataset

Dataset Image Count w\ Contact w\o Contact

Combined 738 282 456

Table 2: Interaction Datasets

C. Detection Method

1. Determining the Best Model Size

The models were trained using the primary dataset, considering three different

sizes: small, medium, and large. All three models were trained with the base

hyperparameters, including an image size of 400, batch size of 8, and 50 epochs.

38

This approach served as a control to evaluate and determine the model size that’s

most suitable for the objective of detecting pig head and pig rear.

Base Model Results

Model Precision Recall mAP@0.5 Speed (hrs)

Small 0.897 0.840 0.880 0.908

Medium 0.911 0.870 0.908 1.247

Large 0.912 0.884 0.918 1.832

Table 3: Base Model Results

After analysis of the training results, it was observed that larger model sizes

outperform smaller ones in detecting pig heads and pig rears. However, there was

minimal discrepancy between the performance of the medium and large models, as

indicated by the metrics presented in Table 3. Conversely, the small model exhibits

the poorest performance among the three sizes. In terms of training speed, it is

noteworthy that the medium model demonstrates a 58.5% faster training rate

compared to the large model. This speed advantage allows for quicker conclusions

to be drawn. Taking these factors into consideration, the medium model size was

selected as the base model.

(a) Base Model mAP Curve Graph (b) Base Model PR Curve Graph

Figure 20: Base Model (Medium-Sized) Metrics

39

2. Training the Base Model and Hyperparameter Tuning

The base model was trained on the primary dataset using various hyperparameter

combinations, including different image sizes (400, 500, 600), batch sizes (8, 16,

32), and epochs (50, 100). In total, 18 models were trained, taking into account

all metrics. The table presented in Table 4 highlights the top three models that

emerged from this training process. In the Model section of the table, the format

represents the model size, image size, batch size, and epochs used for each model.

Best Detection Model Results [Primary Dataset]

Model Precision Recall mAP@0.5

m-600-8-100 0.929 0.895 0.930

m-600-16-100 0.926 0.892 0.930

m-500-8-100 0.926 0.895 0.929

Table 4: Best Detection Model Results [Primary Dataset]

3. Evaluating Medium-Sized Model Results

The top three models, as presented in Table 4, demonstrate promising results.

Among them, m-600-8-100 is the best-performing model with the following results

92.9% Precision, 89.5% Recall, and 93% mAP. Although, there are only slight

difference in the results of these three models. Hence, choice between the mod-

els can be guided by considering the hyperparameters used per model. Based on

training results, higher batch sizes and smaller image sizes developed cost-effective

models that are less resource-intensive to train. The trade-off between these pa-

rameters are not exaggerated. For the purpose of this study, these three models

were selected to be integrated with the interaction method.

40

Figure 21: Best Detection Model (m-600-8-100) mAP Curve [Primary Dataset]

Figure 22: Best Detection Model (m-600-8-100) PR Curve [Primary Dataset]

Figure 23: Best Detection Model (m-600-8-100) F1 Curve [Primary Dataset]

41

The model m-600-8-100 exhibits a notable increase in mAP during the initial

epochs of the training process. The performance reached a stable point at ap-

proximately 40 epochs, and attained a commendable score of 0.9. Throughout the

entire 100 epochs of training, there is no observable downward trend in perfor-

mance, indicating that the model does not suffer from overfitting. This suggests

that the model maintains its effectiveness and generalization capabilities through-

out the training duration. Fig. 21.

Analyzing the PR curve, it is evident that the area under the curve is substan-

tial, indicating a strong performance characterized by high precision and recall

values. This signifies a balanced trade-off between accurately identifying positive

instances and minimizing false positives. Additionally, the F1 curve exhibits a

prominent peak at 0.9, signifying a favorable harmonic mean between precision

and recall. The confidence level of the F1 score is slightly above 0.8, further re-

inforcing the model’s robustness and ability to maintain consistent performance

across different thresholds. These results highlight the model’s effectiveness in

achieving reliable and accurate predictions. Fig. 22 & 23.

D. Interaction Method

1. Integrating Methods

The weights of the top three models, namely m-600-8-100, m-600-16-100, and

m-500-8-100, were extracted from the training results. Furthermore, the weights

for the small model and the large model with base hyperparameters were also

acquired. This selection was motivated by the desire to assess the performance

disparity between the small model, which exhibited the lowest performance, and

the chosen models. Additionally, the weight acquisition for the large model was

driven by its close performance proximity to the top three models, as indicated in

Table 3.

The interaction dataset was utilized to detect pig heads and pig rears using the

42

selected models (sample Fig. 24). The resulting bounding boxes were extracted,

and for every combination of head and rear coordinates, the IoU was computed.

The detection process was performed across three different image sizes (400, 500,

600), while the presence of interaction was determined based on seven IoU inter-

action thresholds (0.05, 0.07, 0.08, 0.09, 0.1, 0.3, 0.5). With five models tested,

a total of 105 tests were conducted for each combination of image size and IoU

threshold for every model.

Figure 24: Sample Pig Head and Pig Rear Detection

2. Evaluating Interaction Results

In the Interaction Method Results Table (Table 5), the Model section uses the

format model size, image size, batch size, and epochs. These are the models

trained from the detection method. On the other hand, the Parameter (Param.)

section is formatted to the image size and IoU interaction threshold used for the

interaction method. The following abbreviations are also used for the tables:

Accuracy (Acc.), Precision (Prec.), Recall (Rec.), and F1-Score (F1).

43

Best Interaction Method Results [Primary Dataset]

Model Param. Acc. Prec. Rec. F1 nMCC

s-400-8-50 600-0.07 0.725 0.608 0.787 0.686 0.730

l-400-8-50 400-0.07 0.760 0.647 0.816 0.723 0.764

m-500-8-100 600-0.07 0.755 0.642 0.809 0.716 0.758

m-600-8-100 500-0.05 0.755 0.624 0.901 0.737 0.776

m-600-16-100 600-0.07 0.743 0.623 0.826 0.710 0.751

Table 5: Best Interaction Method Results [Primary Dataset]

After testing the trained models on the interaction dataset, it appears that the

overall performance is not particularly strong. Across all parameters, the average

values hover around 75%. As anticipated, the small model s-400-8-50 performs

the least favorably, with metrics of 72.5% accuracy, 60.8% precision, 78.7% recall,

68.6% F1 score, and 0.73 nMCC. On the other hand, the best-performing model

in the interaction method results is the top detection model m-600-8-100 with

metrics of 75.5% accuracy, 62.4% precision, 90.1% recall, 73.7% F1 score, and

0.776 nMCC.

Based on observations, the metrics for all models show a general trend when

considering different image sizes and IoU thresholds:

• Increase in image sizes tend to improve performance for most models.

• Accuracy and Precision exhibit higher scores within the range of 0.07-0.09

IoU thresholds.

• At an IoU threshold of approximately 0.05, accuracy and precision experi-

ence a notable decrease, but recall significantly increases.

Considering the tight results obtained in the interaction method testing, it is

important to note that even the worst-performing model is not significantly distant

from the best-performing model. The nMCC score was computed to assess the

balance of these metrics across models. Based on the nMCC, the model that

44

stands out as the best is still m-600-8-100 using an image size of 500 and IoU

interaction threshold of 0.05 with an nMCC score of 0.776, accompanied by a high

recall metric. This outcome was expected, given that this model utilizes a lower

threshold of 0.05. Consequently, it follows that as the threshold decreases, the

occurrence of false positives tend to increase.

Figure 25: Confusion Matrix of The Best Model [Primary Dataset]

E. Model Improvements

1. Creating Different Datasets

Due to the unsatisfactory performance of the models in the interaction method, a

suggestion from [3] was implemented to enhance the results. This involved utilizing

80-20 data splits and incorporating background images to reduce the false positive

rates. Hence, the Secondary and Secondary (BG) datasets were created, with the

target to improve the performance of the interaction method. The underlying

assumption is that the effectiveness of the interaction method is closely tied to the

performance of the detection model, as it relies on the bounding boxes generated

by the detection model.

45

2. Evaluating Improved Datasets Results: Detection

Based on the previous test for the interaction method the best models are m-600-

8-100 and l-400-8-50. With that, these models configurations were used to train

with the Secondary and Secondart (BG) datasets to observe changes in model

performance.

Detection Model Results [Secondary Datasets]

Model Dataset Precision Recall mAP@0.5

m-600-8-100
Secondary

0.935 0.915 0.949

l-400-8-50 0.932 0.889 0.934

m-600-8-100
Secondary (BG)

0.938 0.909 0.947

l-400-8-50 0.930 0.895 0.935

Table 6: Detection Model Results [Secondary Datasets]

After training the models using the new datasets, there were slight improve-

ments observed in the metrics. Comparing the Secondary and Secondary (BG)

datasets across the models, no significant differences were evident. Among the

models, m-600-8-100 stands out as the top performer for both datasets. However,

the m-600-8-100 model without a background dataset holds a slight advantage. As

these detection models exhibit relatively high performance, all four models were

tested in the interaction method.

46

Figure 26: Best Detection Model (m-600-8-100) mAP Curve [Secondary Dataset]

Figure 27: Best Detection Model (m-600-8-100) PR Curve [Secondary Dataset]

Figure 28: Best Detection Model (m-600-8-100) F1 Curve [Secondary Dataset]

47

The m-600-8-100 model trained with the Secondary dataset shows a noticeably

smoother mAP curve during training. It reached its peak at approximately 0.9

and stabilized faster compared to the model trained with the Primary dataset

(see Fig. 21). Additionally, the PR curve exhibits a larger area under the curve,

indicating improved precision and recall. The F1 score for this model remains

similar to the previous model. Fig. 26, 27, & 28.

3. Evaluating Improved Datasets Results: Interaction

Best Interaction Method Results [Secondary Datasets]

Model Param. Acc. Prec. Rec. F1 nMCC

m-600-8-100 500-0.07 0.774 0.681 0.766 0.721 0.767

l-400-8-50 600-0.05 0.738 0.621 0.809 0.703 0.745

m-600-8-100 (BG) 600-0.06 0.762 0.645 0.837 0.728 0.768

l-400-8-50 (BG) 500-0.07 0.757 0.647 0.805 0.720 0.769

Table 7: Best Interaction Method Results [Secondary Datasets]

In the interaction results of the models trained with the Secondary datasets,

there is a slight improvement in accuracy and precision metrics compared to the

models trained with the Primary dataset. However, the recall metric shows sig-

nificantly lower values for lower interaction thresholds. The nMCC values are

comparable to the previous results without significant breakthroughs. Neverthe-

less, what stands out in this model is the improved balance of metrics, indicating

a more balanced performance. Therefore, if there is a need for balanced results,

this model may be preferred.

Although the model l-400-8-50 (BG) achieves the highest nMCC score, indi-

cating a stronger overall performance, the m-600-8-100 model exhibits better ac-

curacy, precision, and balance in terms of metrics despite its slightly lower nMCC.

Therefore, with the factors of accuracy, precision, and balance considered, the

m-600-8-100 model with 500-0.07 parameters served as a more preferable choice.

48

Figure 29: Confusion Matrix of The Best Model [Secondary Dataset]

F. Best End-to-End Models

In conclusion, after training all the detection models and testing in the interaction

method, these are the two best-performing models for detecting pig head-to-rear

contact in pig pen images. A summary of the performance graphs of these models

are in Fig. 30 & Fig. 31. The table and figures provide a concise overview of the

key metrics and results achieved by the two best models.

Best End-to-End Models

Model Parameter Dataset nMCC mAP@0.5

m-600-8-100 500-0.05 Primary 0.776 0.930

m-600-8-100 500-0.07 Secondary 0.767 0.949

Table 8: Best End-to-End Models

49

Figure 30: Summary of m-600-8-100 [Primary Dataset]

Figure 31: Summary of m-600-8-100 [Secondary Dataset]

50

G. Comparative Analysis

Detection Method Comparisons

Model Base Network mAP@50

YOLO Darknet53 0.840

YOLO CSPDarknet53 0.850

Configured YOLO ResNet50 0.863

Configured YOLO CSPDarknet53 0.874

Configured YOLO [1] ResNet50 0.863

YOLOv5 m-600-8-100 (Pri) CSPDarknet53 0.930

YOLOv5 m-600-8-100 (Sec) CSPDarknet53 0.949

Table 9: Detection Method Comparisons (Source: [1])

The trained detection models exhibit improved performance in detecting pig

heads and rears compared to previous models reported in [1]. The average mAP

scores for both models are high, reaching approximately 94%. Consistent with the

findings in [1], the models demonstrate better detection capabilities for pig rears

compared to pig heads, as illustrated in Fig. 22 and 27 where the mAP scores for

heads and rears are presented.

Interaction Method Comparisons

Model True Positive True Negative

Configured YOLO [1] 0.925 0.942

YOLOv5 m-600-8-100 (Pri) 0.901 0.664

YOLOv5 m-600-8-100 (Sec) 0.766 0.779

Table 10: Interaction Method Comparisons

The values presented in this table were derived from the confusion matrices of

the interaction results. Specifically, for the Configured YOLOmodel, the confusion

matrix used is the one reported in [1]. When considering the True Positive Rate

51

or the proportion of correct detections with contact, the first model achieves a

commendable score of 90%, which is comparable to the performance reported in

previous work. However, the second model falls short with a score of 76.6%. In

terms of the True Negative Rate, both models do not demonstrate comparable

performance to previous work, as they achieve relatively low scores. In terms of

overall balance, the second model exhibits more tightly balanced metrics, while

the first model exhibits a significant trade-off with a higher rate of false positives.

H. TailSafe: Website Application

1. Landing Page

Figure 32: TailSafe Landing Page: Main Section

Upon accessing the website application, the user is welcomed by the landing

page (Fig. 32) featuring the title ”TailSafe” and an overview of its purpose. The

landing page provides valuable information about tail biting and explains the role

of TailSafe in addressing this issue. Positioned below is a button labeled ”Start

Detecting Now,” clicking on it seamlessly redirects the user to the image upload

section of the page.

52

Figure 33: TailSafe Landing Page: Upload Section

Above the image upload section (Fig. 33), a helpful guide is presented for

assistance in using the website application for upload of pig pen images and de-

tection of contact presence. Directly below, users are prompted to select an image

file.

Figure 34: TailSafe Landing Page: Upload Section (after uploading)

Once the user uploads an image, the file name of the image will replace the

default text and be displayed in the ”Choose File” bar. The upload process is

completed once the user clicks the ”Upload Image” button, where the image will

53

be submitted to the system.

2. Image Confirmation Page

After an image is uploaded to the system, the user is redirected to the image

confirmation page (Fig. 35). In this page, the user is able to check and confirm

if the uploaded image is correct through the displayed image on the page. Upon

confirmation, the user clicks the ”Submit and Process” button which begins the

processing of the image. Alternatively, the user may click the ”Back” button to

return to the landing page’s upload section.

Figure 35: TailSafe Image Confirmation Page

Processing the image includes detection of the pig head and pig rears in the

image. Consequently, it computes the IoU of pig head-to-rear bounding boxes,

and its interaction classification and count.

54

3. Results Page

Upon completion of the process, the user is automatically redirected to the results

page (Fig. 36 & 37). The results page displays the image indicating in highlighted

boxes the pig heads (red box) and the pig rears (green boxes) for easy visualization.

Moreover, the page displays the interaction classification, indicating whether the

image is with contact or without contact, along with the corresponding contact

count. Below this, brief explanations on what the results mean are provided for

clarity.

Figure 36: TailSafe Results Page: Without Contact Classification

55

Figure 37: TailSafe Results Page: With Contact Classification

56

I. Summary of Detection and Interaction Method Results

1. Detection Models using Primary Dataset

Detection Model Results [Primary Dataset] @ 50 Epochs

Model Image Batch Precision Recall mAP@0.5

m-400-8-50

400

8 0.911 0.870 0.908

m-400-16-50 16 0.909 0.875 0.904

m-400-32-50 32 0.908 0.859 0.897

m-500-8-50

500

8 0.918 0.884 0.917

m-500-16-50 16 0.922 0.882 0.920

m-500-32-50 32 0.917 0.858 0.895

m-600-8-50

600

8 0.921 0.884 0.920

m-600-16-50 16 0.918 0.888 0.923

m-600-32-50 32 0.916 0.804 0.847

Table 11: Detection Model Results [Primary Dataset] @ 50 Epochs

Detection Model Results [Primary Dataset] @ 100 Epochs

Model Image Batch Precision Recall mAP@0.5

m-400-8-100

400

8 0.918 0.888 0.919

m-400-16-100 16 0.924 0.881 0.921

m-400-32-100 32 0.911 0.805 0.840

m-500-8-100

500

8 0.926 0.895 0.929

m-500-16-100 16 0.911 0.853 0.885

m-500-32-100 32 0.918 0.847 0.876

m-600-8-100

600

8 0.929 0.895 0.93

m-600-16-100 16 0.926 0.892 0.93

m-600-32-100 32 0.921 0.845 0.88

Table 12: Detection Model Results [Primary Dataset] @ 100 Epochs

57

2. Detection Models using Secondary Datasets

Refer to Table 6, these are the only models trained using the Secondary datasets.

3. Interaction Method Results using Primary Dataset

Interaction s-400-8-50 Results [Primary Dataset]

Image IoU Acc. Prec. Rec. F1 nMCC

400

0.50 0.622 0.516 0.174 0.260 0.553

0.30 0.631 0.541 0.234 0.327 0.573

0.10 0.694 0.601 0.592 0.596 0.675

0.09 0.701 0.600 0.649 0.624 0.688

0.08 0.720 0.615 0.723 0.660 0.713

0.07 0.714 0.602 0.741 0.665 0.713

0.05 0.694 0.570 0.805 0.668 0.710

500

0.50 0.648 0.608 0.220 0.323 0.593

0.30 0.655 0.615 0.255 0.361 0.604

0.10 0.715 0.624 0.642 0.633 0.700

0.09 0.717 0.615 0.691 0.651 0.708

0.08 0.713 0.602 0.734 0.661 0.711

0.07 0.715 0.600 0.766 0.673 0.719

0.05 0.706 0.578 0.858 0.690 0.731

600

0.50 0.617 0.495 0.160 0.241 0.543

0.30 0.623 0.518 0.209 0.298 0.560

0.10 0.728 0.640 0.656 0.648 0.713

0.09 0.718 0.616 0.695 0.653 0.710

0.08 0.724 0.613 0.748 0.674 0.722

0.07 0.725 0.608 0.787 0.686 0.730

0.05 0.709 0.581 0.855 0.692 0.732

Table 13: Interaction s-400-8-50 Results [Primary Dataset]

58

Interaction l-400-8-50 Results [Primary Dataset]

Image IoU Acc. Prec. Rec. F1 nMCC

400

0.50 0.629 0.569 0.117 0.194 0.556

0.30 0.644 0.623 0.170 0.267 0.585

0.10 0.760 0.691 0.674 0.682 0.745

0.09 0.768 0.687 0.723 0.705 0.757

0.08 0.763 0.663 0.773 0.714 0.759

0.07 0.760 0.647 0.819 0.723 0.764

0.05 0.738 0.608 0.887 0.722 0.761

500

0.50 0.641 0.635 0.142 0.232 0.579

0.30 0.664 0.702 0.209 0.322 0.618

0.10 0.747 0.667 0.674 0.670 0.732

0.09 0.755 0.664 0.723 0.693 0.745

0.08 0.751 0.646 0.770 0.702 0.748

0.07 0.752 0.639 0.809 0.714 0.756

0.05 0.729 0.601 0.865 0.709 0.749

600

0.50 0.627 0.574 0.096 0.164 0.552

0.30 0.634 0.597 0.131 0.215 0.567

0.10 0.749 0.678 0.656 0.667 0.733

0.09 0.756 0.669 0.716 0.692 0.746

0.08 0.756 0.659 0.748 0.701 0.750

0.07 0.749 0.643 0.773 0.702 0.750

0.05 0.745 0.617 0.879 0.725 0.764

Table 14: Interaction l-400-8-50 Results [Primary Dataset]

59

Interaction m-500-8-100 Results [Primary Dataset]

Image IoU Acc. Prec. Rec. F1 nMCC

400

0.50 0.618 0.500 0.131 0.208 0.541

0.30 0.634 0.565 0.184 0.278 0.571

0.10 0.752 0.697 0.621 0.657 0.733

0.09 0.762 0.695 0.670 0.680 0.746

0.08 0.763 0.679 0.720 0.699 0.752

0.07 0.755 0.656 0.752 0.701 0.749

0.05 0.730 0.605 0.851 0.707 0.747

500

0.50 0.625 0.537 0.128 0.206 0.550

0.30 0.634 0.570 0.174 0.266 0.570

0.10 0.748 0.679 0.645 0.662 0.731

0.09 0.757 0.677 0.699 0.688 0.745

0.08 0.764 0.674 0.741 0.706 0.756

0.07 0.762 0.659 0.780 0.714 0.759

0.05 0.741 0.616 0.855 0.716 0.756

600

0.50 0.614 0.475 0.099 0.164 0.528

0.30 0.627 0.548 0.142 0.225 0.557

0.10 0.744 0.669 0.652 0.661 0.728

0.09 0.745 0.660 0.688 0.674 0.733

0.08 0.763 0.664 0.770 0.713 0.758

0.07 0.755 0.642 0.809 0.716 0.758

0.05 0.744 0.615 0.879 0.724 0.763

Table 15: Interaction m-500-8-100 Results [Primary Dataset]

60

Interaction m-600-8-100 Results [Primary Dataset]

Image IoU Acc. Prec. Rec. F1 nMCC

400

0.50 0.642 0.596 0.199 0.298 0.584

0.30 0.650 0.607 0.241 0.345 0.598

0.10 0.753 0.681 0.667 0.674 0.738

0.09 0.753 0.666 0.713 0.688 0.743

0.08 0.762 0.661 0.773 0.712 0.758

0.07 0.759 0.646 0.816 0.721 0.762

0.05 0.738 0.610 0.876 0.719 0.758

500

0.50 0.648 0.638 0.181 0.282 0.592

0.30 0.659 0.650 0.230 0.340 0.609

0.10 0.759 0.684 0.684 0.684 0.745

0.09 0.768 0.678 0.748 0.712 0.760

0.08 0.768 0.678 0.748 0.712 0.760

0.07 0.771 0.658 0.833 0.736 0.775

0.05 0.755 0.624 0.901 0.737 0.776

600

0.50 0.630 0.562 0.145 0.231 0.561

0.30 0.634 0.568 0.177 0.270 0.570

0.10 0.751 0.676 0.667 0.671 0.735

0.09 0.756 0.667 0.723 0.694 0.746

0.08 0.749 0.645 0.766 0.700 0.746

0.07 0.744 0.627 0.812 0.708 0.750

0.05 0.737 0.608 0.879 0.719 0.758

Table 16: Interaction m-600-8-100 Results [Primary Dataset]

61

Interaction m-600-16-100 Results [Primary Dataset]

Image IoU Acc. Prec. Rec. F1 nMCC

400

0.50 0.626 0.531 0.181 0.270 0.559

0.30 0.637 0.558 0.238 0.333 0.580

0.10 0.744 0.670 0.649 0.659 0.727

0.09 0.760 0.676 0.716 0.695 0.749

0.08 0.753 0.659 0.734 0.695 0.745

0.07 0.751 0.644 0.777 0.704 0.749

0.05 0.714 0.588 0.844 0.693 0.733

500

0.50 0.608 0.456 0.128 0.199 0.526

0.30 0.626 0.530 0.188 0.277 0.560

0.10 0.748 0.673 0.663 0.668 0.732

0.09 0.744 0.653 0.702 0.677 0.733

0.08 0.740 0.634 0.755 0.689 0.737

0.07 0.733 0.618 0.787 0.693 0.737

0.05 0.725 0.596 0.869 0.707 0.747

600

0.50 0.622 0.517 0.163 0.248 0.551

0.30 0.637 0.565 0.216 0.313 0.578

0.10 0.732 0.645 0.663 0.654 0.718

0.09 0.740 0.645 0.709 0.676 0.730

0.08 0.749 0.641 0.784 0.705 0.749

0.07 0.743 0.623 0.826 0.710 0.751

0.05 0.715 0.587 0.858 0.697 0.737

Table 17: Interaction m-600-16-100 Results [Primary Dataset]

62

4. Interaction Method Results using Secondary Dataset

Interaction m-600-8-100 Results [Secondary Dataset]

Image IoU Acc. Prec. Rec. F1 nMCC

400

0.50 0.642 0.650 0.138 0.228 0.582

0.30 0.656 0.671 0.195 0.302 0.605

0.10 0.737 0.688 0.571 0.624 0.714

0.09 0.749 0.682 0.645 0.663 0.732

0.08 0.747 0.663 0.684 0.674 0.733

0.07 0.748 0.657 0.713 0.684 0.738

0.05 0.737 0.617 0.823 0.705 0.746

500

0.50 0.634 0.620 0.110 0.187 0.566

0.30 0.660 0.718 0.181 0.289 0.613

0.10 0.751 0.696 0.617 0.654 0.731

0.09 0.762 0.695 0.670 0.682 0.746

0.08 0.770 0.690 0.720 0.705 0.758

0.07 0.774 0.681 0.766 0.721 0.767

0.05 0.747 0.630 0.816 0.711 0.752

600

0.50 0.619 0.514 0.064 0.114 0.530

0.30 0.627 0.569 0.103 0.174 0.552

0.10 0.748 0.689 0.621 0.653 0.729

0.09 0.748 0.673 0.663 0.668 0.732

0.08 0.756 0.672 0.706 0.689 0.744

0.07 0.756 0.658 0.752 0.702 0.75

0.05 0.757 0.642 0.826 0.722 0.763

Table 18: Interaction m-600-8-100 Results [Secondary Dataset]

63

Interaction l-400-8-50 Results [Secondary Dataset]

Image IoU Acc. Prec. Rec. F1 nMCC

400

0.50 0.621 0.517 0.106 0.176 0.541

0.30 0.622 0.522 0.128 0.205 0.546

0.10 0.728 0.668 0.571 0.616 0.705

0.09 0.725 0.653 0.599 0.625 0.705

0.08 0.734 0.654 0.649 0.651 0.718

0.07 0.738 0.648 0.691 0.669 0.727

0.05 0.734 0.617 0.801 0.698 0.740

500

0.50 0.627 0.578 0.092 0.159 0.551

0.30 0.633 0.590 0.128 0.210 0.564

0.10 0.720 0.664 0.539 0.595 0.694

0.09 0.741 0.678 0.613 0.644 0.722

0.08 0.749 0.667 0.688 0.677 0.736

0.07 0.749 0.654 0.730 0.690 0.741

0.05 0.733 0.615 0.805 0.697 0.740

600

0.50 0.636 0.618 0.121 0.202 0.569

0.30 0.646 0.648 0.163 0.261 0.589

0.10 0.738 0.682 0.592 0.634 0.717

0.09 0.747 0.679 0.638 0.658 0.729

0.08 0.743 0.655 0.688 0.671 0.730

0.07 0.743 0.640 0.745 0.689 0.738

0.05 0.738 0.621 0.809 0.703 0.745

Table 19: Interaction l-400-8-50 Results [Secondary Dataset]

64

Interaction m-600-8-100 Results [Secondary (BG) Dataset]

Image IoU Acc. Prec. Rec. F1 nMCC

400

0.50 0.619 0.510 0.092 0.156 0.536

0.30 0.642 0.622 0.163 0.258 0.582

0.10 0.744 0.696 0.585 0.636 0.722

0.09 0.749 0.686 0.635 0.659 0.731

0.08 0.759 0.673 0.716 0.694 0.748

0.07 0.763 0.666 0.762 0.711 0.757

0.05 0.749 0.629 0.840 0.719 0.759

500

0.50 0.634 0.630 0.103 0.177 0.566

0.30 0.653 0.691 0.167 0.269 0.601

0.10 0.764 0.713 0.642 0.675 0.746

0.09 0.763 0.693 0.681 0.687 0.748

0.08 0.762 0.679 0.713 0.696 0.750

0.07 0.759 0.660 0.759 0.706 0.753

0.05 0.753 0.632 0.851 0.725 0.764

600

0.50 0.625 0.558 0.085 0.148 0.545

0.30 0.637 0.625 0.124 0.207 0.572

0.10 0.749 0.695 0.613 0.652 0.730

0.09 0.756 0.686 0.667 0.676 0.740

0.08 0.762 0.680 0.709 0.694 0.750

0.07 0.762 0.668 0.748 0.706 0.754

0.05 0.762 0.645 0.837 0.728 0.768

Table 20: Interaction m-600-8-100 Results [Secondary (BG) Dataset]

65

Interaction l-400-8-50 Results [Secondary (BG) Dataset]

Image IoU Acc. Prec. Rec. F1 nMCC

400

0.50 0.631 0.632 0.085 0.150 0.560

0.30 0.646 0.698 0.131 0.221 0.590

0.10 0.752 0.709 0.596 0.647 0.731

0.09 0.759 0.697 0.652 0.674 0.742

0.08 0.767 0.698 0.688 0.693 0.753

0.07 0.767 0.683 0.727 0.704 0.757

0.05 0.757 0.643 0.819 0.721 0.762

500

0.50 0.630 0.645 0.071 0.128 0.557

0.30 0.634 0.643 0.096 0.167 0.566

0.10 0.760 0.723 0.603 0.658 0.740

0.09 0.762 0.712 0.631 0.669 0.743

0.08 0.768 0.703 0.681 0.692 0.753

0.07 0.778 0.694 0.748 0.720 0.769

0.05 0.763 0.649 0.826 0.727 0.767

600

0.50 0.629 0.618 0.074 0.133 0.553

0.30 0.640 0.674 0.110 0.189 0.577

0.10 0.757 0.729 0.582 0.647 0.736

0.09 0.762 0.719 0.617 0.664 0.742

0.08 0.770 0.707 0.677 0.692 0.754

0.07 0.764 0.682 0.716 0.699 0.753

0.05 0.757 0.647 0.805 0.717 0.759

Table 21: Interaction l-400-8-50 Results [Secondary (BG) Dataset]

66

VI. Discussions

A. Discussion of Work

TailSafe, a Pig Head-to-Rear Contact Detection System, is a website application

designed to be a decision support tool for farmers in diagnosing issues in pig

pens and detecting instances of tail biting. Its primary goal is to evaluate the

effectiveness of YOLOv5, a state-of-the-art object detection model, in accurately

identifying pig heads and pig rears. This evaluation involves testing various model

sizes and adjusting training parameters such as image size, batch size, and epochs.

Additionally, TailSafe utilizes the detected pig parts and extracts bounding boxes

to calculate IoU scores, enabling the identification of interactions within pig pen

images.

A successful method for automated detection of pig heads, pig rears, and in-

teractions within a pig pen has been achieved. The process involved training

multiple models to determine the optimal model size and hyperparameters. In to-

tal, 24 models were trained for the detection method. Similarly, for the interaction

method, extensive testing was conducted to identify the best parameters, includ-

ing image size for detection and IoU interaction threshold. A total of 9 models

were tested, resulting in 189 instances of testing for each parameter combination.

Comparisons with previous work revealed notable improvements, particularly in

the accurate detection of pig heads and pig rears. Furthermore, the developed

models were seamlessly integrated into a website application, allowing users to

effortlessly upload single pig pen images and obtain detailed results on contact

presence and contact count.

Key Contributions

1. Developed a robust detection model using the YOLOv5 algorithm, capable

of accurately detecting pig heads and pig rears in pig pen images.

2. Designed and implemented an interaction method that utilizes the bounding

67

boxes generated by the detection model. This method computes IoUs and

compares it to a calibrated IoU interaction threshold to determine contact

presence among pigs within the pen.

3. Conducted comprehensive investigations to assess the performance varia-

tions of different YOLOv5 model sizes and training hyperparameters specif-

ically for pig part detection.

4. Explored the impact of image size parameter for detection and IoU inter-

action thresholds to optimize the identification of contact presence between

pigs in pig pen images.

5. Successfully integrated the detection model and interaction method into a

user-friendly web-based application. This application serves as a valuable

decision support tool for farmers, enabling them to diagnose pig pen-related

issues and effectively manage situations such as tail biting outbreaks.

The training and evaluation process resulted in the identification of two dis-

tinct models for the contact detection task. The first model, trained on the pri-

mary dataset, exhibited higher recall metrics but a notably lower true negative

rate. This discrepancy can be attributed to the utilization of the lowest interaction

threshold. On the other hand, the second model, trained on the secondary dataset,

displayed slightly lower metrics but demonstrated a more balanced performance.

This model may prove advantageous in scenarios where balanced performance is

desired. Although there were slight variations in model performance across differ-

ent parameters, the differences were not that substantial. Therefore, alternative

approaches for further improvement should be explored such as developing a differ-

ent interaction method. Regarding the dataset, the data split appeared to enhance

the model’s performance, while the inclusion of background images did not appear

to yield significant improvements.

68

B. Comparison to Previous Work

Compared to the detection models presented in [1], the developed detection model

demonstrates superior performance in detecting pig heads and pig rears. How-

ever, when it comes to the interaction method, the results are not as favorable

as those reported in previous studies and fall short of expectations. Nevertheless,

there are valuable insights for optimizing the detection model, including increasing

image sizes and potentially exploring larger model sizes. Similarly, for the inter-

action method, experimenting with larger image sizes and exploring alternative

approaches may lead to improved performance.

C. Issues in Development

During the development of the detection model, the initial setup proved to be

relatively straightforward due to the abundance of online resources, such as the

notebook tutorials available in [2], which provided guidance for creating and train-

ing custom models. Modifying the model backbone was also relatively simple, in-

volving edits to a YAML file, as long as the layers were compatible with YOLOv5.

However, one significant challenge encountered was the training process itself,

specifically the time and GPU RAM required. Training larger model sizes de-

manded more time and GPU power, posing a crucial consideration when selecting

the appropriate model size, even though larger models were anticipated to en-

hance detection performance. It is worth noting that this study was conducted

using Google Colab, which imposes timeouts for inactivity. Consequently, the

researcher had to carefully monitor the training process to ensure it continued

uninterrupted, avoiding delays and disconnections.

The interaction computation in the interaction method was relatively lightweight,

primarily involving the calculation of IoUs for each pig head and rear combination

and comparing them to the specified threshold. However, the detection process

using PyTorch proved to be computationally expensive, particularly when using

larger model sizes and larger image size parameters. In some cases, the detection

69

phase would consume around 45GB of GPU RAM, necessitating the utilization of

more powerful and costly GPUs available in Google Colab.

70

VII. Conclusions

The non-augmented dataset obtained from [1], which combined the AUF dataset

and AFBI dataset, served as the foundation for this study. To prepare the de-

tection dataset, the images were uploaded to Roboflow for further processing,

including splitting and applying various data augmentations. The dataset was

successfully augmented through techniques such as rotation, horizontal flip, crop,

and brightness adjustments. Finally, the augmented dataset was exported in the

YOLOv5 PyTorch format, ready for detection training and evaluation.

To establish a standardized framework for testing and evaluation, a base hyper-

parameter (400-8-50) was identified for controlling the experiments conducted on

different YOLOv5 model sizes: small, medium, and large. Following the training

and evaluation process, it was determined that the medium model size exhibited

the most favorable performance for the detection task. This choice was based on

its close resemblance to the large model size’s results, while being more efficient in

terms of training time and computational resources. Consequently, the medium

model size was designated as the base model.

Subsequently, the hyperparameters were fine-tuned to investigate their impact

on the model’s performance and identify the optimal combination of image size,

batch size, and epochs. The models underwent evaluation using metrics such

as mean Average Precision (mAP), Precision-Recall (PR) curve, and F1 curve.

Through this evaluation, the best detection model was determined to have the

configuration m-600-8-100, signifying the most effective combination of hyperpa-

rameters for achieving high performance.

Using the detection models that were developed, the pig heads and pig rears

were successfully detected in the interaction dataset, generating bounding boxes

around these specific pig parts. The coordinates of these bounding boxes were

extracted from the detection results, allowing for the computation of IoU values

between various combinations of pig heads and pig rears within the images. Subse-

quently, the computed IoUs were compared against an IoU interaction threshold,

71

which was calibrated during the testing phase.

To identify the optimum parameter combination for achieving the most accu-

rate predictions, different image sizes for detection and various IoU interaction

thresholds were explored. After thorough evaluation, the best model was found

to exhibit superior performance with an image size of 500 and an IoU interaction

threshold of 0.05. This specific combination of parameters resulted in the most

effective predictions for detecting pig interactions within the dataset.

To enhance the accuracy of interaction predictions, two additional datasets

were created based on the recommendations provided in [3]. The first dataset

was split in an 80-20 ratio, while the second dataset consisted of an 80-20 split

with the inclusion of background images. These datasets underwent the same

data processing and training procedures, using the two best models obtained from

previous training sessions: m-600-8-100 and m-400-8-50.

By training the models on these new datasets, more balanced metrics were

achieved compared to the initial model. Ultimately, the best-performing model

among these datasets remained consistent, namely m-600-8-100. This configu-

ration consistently demonstrated superior performance and improved the overall

accuracy and balance of the interaction predictions.

The developed methods were successfully integrated into a web-based applica-

tion called TailSafe. This application provides seamless detection of pig head-to-

rear contact and serves as a valuable decision support tool for farmers to diagnose

pig pen related issues and tail biting outbreaks. With TailSafe, users can con-

veniently upload pig pen images, detect contact presence, and access insightful

information to aid in managing their farming operations effectively.

72

VIII. Recommendations

The pig part detection model can be enhanced by improving it precision and recall,

consider implementing the follwoing recommendations:

1. Enhance the pig part detection model by training it with larger image sizes.

To compensate for the increased training time, consider increasing the batch

size to optimize training efficiency.

2. Train for more epochs. Monitor the model’s performance during training to

prevent overfitting.

3. Augment the existing pig pen dataset or acquire a larger dataset specifically

for pig part detection. Aim for a dataset size of over 10,000 images, as

recommended for object detection tasks with YOLOv5.

4. Whenever possible, utilize higher resolution images to provide the model

with more detailed information during training.

The interaction method has significant potential for improvement, as all met-

rics can be enhanced across the board. To achieve better performance, consider

implementing the following strategies:

1. Increase the image size parameter for the detection part to capture more

detailed information.

2. Utilize the balanced detection model trained on the secondary dataset using

an 80-20 split for balanced performance.

3. Investigate alternative interaction methods that can leverage the existing

detection model for more accurate results.

The website application can be enhanced with various quality-of-life improve-

ments. Consider implementing the following enhancements to provide a better

user experience:

73

1. Implement the functionality to process multiple image uploads simultane-

ously while optimizing the detection time.

2. Enhance the user experience by enabling the viewing of the original image

in the results page, along with the identified contact locations.

3. Provide the option for users to download the processed images directly from

the application.

4. Introduce user profiles that allow tracking and analysis of previous detections

for enhanced monitoring and insights.

74

IX. Bibliography

[1] A. Alameer, S. Buijs, N. O’Connell, L. Dalton, M. Larsen, L. Ped-

ersen, and I. Kyriazakis, “Automated detection and quantification of

contact behaviour in pigs using deep learning,” Biosystems Engineer-

ing, vol. 224, pp. 118–130, Dec. 2022. Accessed Nov. 18, 2022.

doi.org/10.1016/j.biosystemseng.2022.10.002. [ONLINE]. Available: https:

//www.sciencedirect.com/science/article/pii/S1537511022002240.

[2] G. Jocher, “Yolov5 by ultralytics,” 2020. Accessed Nov. 27, 2023.

doi.org/10.5281/zenodo.3908559. [ONLINE]. Available: https://github.

com/ultralytics/yolov5.

[3] “Tips for best training results.” Ultralytics docs. https://docs.

ultralytics.com/yolov5/tutorials/tips_for_best_training_

results/ (accessed on May 27, 2023), 2020.

[4] C. Imane, “Yolo v5 model architecture [explained].” OpenGenus IQ: Com-

puting Expertise Legacy. https://iq.opengenus.org/yolov5/ (accessed

on May 27, 2023).

[5] Y. Gomez, A. H. Stygar, I. J. Boumans, E. A. Bokkers, L. J. Pedersen,

J. K. Niemi, M. Pastell, X. Manteca, and P. Llonch, “A systematic re-

view on validated precision livestock farming technologies for pig production

and its potential to assess animal welfare,” Frontiers in Veterinary Science,

vol. 8, May 2021. Accessed Nov. 18, 2022. doi.org/10.3389/fvets.2021.660565.

[ONLINE]. Available: https://www.frontiersin.org/articles/10.3389/

fvets.2021.660565/full.

[6] L. Bergamini, S. Pini, A. Simoni, R. Vezzani, S. Calderara,

R. D’Eath, and R. Fisher, “Extracting accurate long-term behavior

changes from a large pig dataset,” Proceedings of the 16th Inter-

national Joint Conference on Computer Vision, Imaging and Com-

75

https://www.sciencedirect.com/science/article/pii/S1537511022002240
https://www.sciencedirect.com/science/article/pii/S1537511022002240
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://docs.ultralytics.com/yolov5/tutorials/tips_for_best_training_results/
https://docs.ultralytics.com/yolov5/tutorials/tips_for_best_training_results/
https://docs.ultralytics.com/yolov5/tutorials/tips_for_best_training_results/
https://iq.opengenus.org/yolov5/
https://www.frontiersin.org/articles/10.3389/fvets.2021.660565/full
https://www.frontiersin.org/articles/10.3389/fvets.2021.660565/full

puter Graphics Theory and Applications, Feb. 2021. Accessed Nov.

18, 2022. dx.doi.org/10.5220/0010288405240533. [ONLINE]. Available:

https://www.researchgate.net/publication/349382558_Extracting_

Accurate_Long-term_Behavior_Changes_from_a_Large_Pig_Dataset.

[7] A. Bhujel, E. Arulmozhi, B.-E. Moon, and H.-T. Kim, “Deep-learning-

based automatic monitoring of pigs’ physico-temporal activities at differ-

ent greenhouse gas concentrations,” Animals, vol. 11, p. 3089, Oct. 2021.

Accessed Nov. 18, 2022. doi.org/10.3390/ani11113089. [ONLINE]. Available:

https://www.mdpi.com/2076-2615/11/11/3089.

[8] “Tail biting.” Ontario Ministry of Agriculture, Food and Rural Affairs Or-

ganization. http://omafra.gov.on.ca/english/livestock/swine/news/

mayjun12a2.htm (accessed Dec. 10, 2022), 2022.

[9] Y. J. Kim, M. H. Song, S. I. Lee, J. H. Lee, H. J. Oh, J. W. An, S. Y.

Chang, Y. B. Go, B. J. Park, M. S. Jo, C. G. Lee, H. B. Kim, and J. H. Cho,

“Evaluation of pig behavior changes related to temperature, relative humidity,

volatile organic compounds, and illuminance,” Journal of Animal Science

and Technology, vol. 63, pp. 790–798, July 2021. Accessed Nov. 18, 2022.

doi.org/10.5187/jast.2021.e89. [ONLINE]. Available: https://www.ejast.

org/archive/view_article?pid=jast-63-4-790.

[10] L. E. van der Zande, O. Guzhva, and B. T. Rodenburg, “Individual detec-

tion and tracking of group housed pigs in their home pen using computer

vision,” Frontiers in Animal Science, vol. 2, Apr. 2021. Accessed Nov.

18, 2022. doi.org/10.3389/fanim.2021.669312. [ONLINE]. Available: https:

//www.frontiersin.org/articles/10.3389/fanim.2021.669312/full.

[11] S. Wang, H. Jiang, Y. Qiao, S. Jiang, H. Lin, and Q. Sun, “The re-

search progress of vision-based artificial intelligence in smart pig farm-

ing,” Sensors, vol. 22, p. 6541, Aug. 2022. Accessed Nov. 18, 2022.

76

https://www.researchgate.net/publication/349382558_Extracting_Accurate_Long-term_Behavior_Changes_from_a_Large_Pig_Dataset
https://www.researchgate.net/publication/349382558_Extracting_Accurate_Long-term_Behavior_Changes_from_a_Large_Pig_Dataset
https://www.mdpi.com/2076-2615/11/11/3089
http://omafra.gov.on.ca/english/livestock/swine/news/mayjun12a2.htm
http://omafra.gov.on.ca/english/livestock/swine/news/mayjun12a2.htm
https://www.ejast.org/archive/view_article?pid=jast-63-4-790
https://www.ejast.org/archive/view_article?pid=jast-63-4-790
https://www.frontiersin.org/articles/10.3389/fanim.2021.669312/full
https://www.frontiersin.org/articles/10.3389/fanim.2021.669312/full

doi.org/10.3390/s22176541. [ONLINE]. Available: https://www.mdpi.com/

1424-8220/22/17/6541.

[12] H. Shao, J. Pu, and J. Mu, “Pig-posture recognition based on computer vision:

Dataset and exploration,” Animals, vol. 11, p. 1295, Apr. 2021. Accessed

Nov. 18, 2022. doi.org/10.3390/ani11051295. [ONLINE]. Available: https:

//www.mdpi.com/2076-2615/11/5/1295.

[13] Y. Luo, Z. Zeng, H. Lu, and E. Lv, “Posture detection of individual pigs

based on lightweight convolution neural networks and efficient channel-wise

attention,” Sensors, vol. 21, p. 8369, Dec. 2021. Accessed Nov. 18, 2022.

doi.org/10.3390/s21248369. [ONLINE]. Available: https://www.mdpi.com/

1424-8220/21/24/8369.

[14] L. Zhang, H. Gray, X. Ye, L. Collins, and N. Allinson, “Automatic individual

pig detection and tracking in pig farms,” Sensors, vol. 19, p. 1188, Mar. 2019.

Accessed Nov. 18, 2022. doi.org/10.3390/s19051188. [ONLINE]. Available:

https://www.mdpi.com/1424-8220/19/5/1188.

[15] “What are convolutional neural networks?.” IBM Website. https://www.

ibm.com/topics/convolutional-neural-networks (accessed on Dec. 10,

2022), 2022.

[16] G. Karimi, “Introduction to yolo algorithm for object detection.”

Section Website. https://www.section.io/engineering-education/

introduction-to-yolo-algorithm-for-object-detection/ (accessed on

Jan. 21, 2023), 2021.

[17] E. Zvornicanin, “What is yolo algorithm?.” Baeldung Website. https:

//www.baeldung.com/cs/yolo-algorithm#:~:text=YOLO%20algorithm%

20aims%20to%20predict,Width%20of%20the%20box%20(%20) (accessed on

Jan. 21, 2023), 2022.

77

https://www.mdpi.com/1424-8220/22/17/6541
https://www.mdpi.com/1424-8220/22/17/6541
https://www.mdpi.com/2076-2615/11/5/1295
https://www.mdpi.com/2076-2615/11/5/1295
https://www.mdpi.com/1424-8220/21/24/8369
https://www.mdpi.com/1424-8220/21/24/8369
https://www.mdpi.com/1424-8220/19/5/1188
https://www.ibm.com/topics/convolutional-neural-networks
https://www.ibm.com/topics/convolutional-neural-networks
https://www.section.io/engineering-education/introduction-to-yolo-algorithm-for-object-detection/
https://www.section.io/engineering-education/introduction-to-yolo-algorithm-for-object-detection/
https://www.baeldung.com/cs/yolo-algorithm#:~:text=YOLO%20algorithm%20aims%20to%20predict,Width%20of%20the%20box%20(%20)
https://www.baeldung.com/cs/yolo-algorithm#:~:text=YOLO%20algorithm%20aims%20to%20predict,Width%20of%20the%20box%20(%20)
https://www.baeldung.com/cs/yolo-algorithm#:~:text=YOLO%20algorithm%20aims%20to%20predict,Width%20of%20the%20box%20(%20)

[18] R. Kanjee, “Yolov5 controversy — is yolov5 real?.”

Medium Website. https://medium.com/augmented-startups/

yolov5-controversy-is-yolov5-real-20e048bebb08 (accessed on May

27, 2023), 2020.

[19] M. R. Munawar and M. Z. Hussain, “Yolor or yolov5 (which one is bet-

ter)?.” Medium Website. https://medium.com/augmented-startups/

yolor-or-yolov5-which-one-is-better-2f844d35e1a1#:~:text=

YOLOv5%20provides%20better%20FPS%20than,more%20popular%

20compared%20to%20YOLOR. (accessed on Jan. 21, 2023), 2022.

[20] “ultralytics/yolov5.” Zenodo.org. https://zenodo.org/search?page=1&

size=20&q=conceptrecid:"3908559"&sort=-version&all_versions=

True (accessed on May 27, 2023).

[21] “Roboflow website.” Used for splitting the dataset, converting data annota-

tions to YOLOv5 PyTorch format, and conducting data augmentations on

the dataset . https://app.roboflow.com (accessed on May 27, 2023).

[22] A. Suresh, “What is a confusion matrix?.”

Medium Website. https://medium.com/analytics-vidhya/

what-is-a-confusion-matrix-d1c0f8feda5#:~:text=A%20Confusion%

20matrix%20is%20an,by%20the%20machine%20learning%20model. (ac-

cessed on Jan. 21, 2023), 2020.

78

https://medium.com/augmented-startups/yolov5-controversy-is-yolov5-real-20e048bebb08
https://medium.com/augmented-startups/yolov5-controversy-is-yolov5-real-20e048bebb08
https://medium.com/augmented-startups/yolor-or-yolov5-which-one-is-better-2f844d35e1a1#:~:text=YOLOv5%20provides%20better%20FPS%20than,more%20popular%20compared%20to%20YOLOR.
https://medium.com/augmented-startups/yolor-or-yolov5-which-one-is-better-2f844d35e1a1#:~:text=YOLOv5%20provides%20better%20FPS%20than,more%20popular%20compared%20to%20YOLOR.
https://medium.com/augmented-startups/yolor-or-yolov5-which-one-is-better-2f844d35e1a1#:~:text=YOLOv5%20provides%20better%20FPS%20than,more%20popular%20compared%20to%20YOLOR.
https://medium.com/augmented-startups/yolor-or-yolov5-which-one-is-better-2f844d35e1a1#:~:text=YOLOv5%20provides%20better%20FPS%20than,more%20popular%20compared%20to%20YOLOR.
https://zenodo.org/search?page=1&size=20&q=conceptrecid:"3908559"&sort=-version&all_versions=True
https://zenodo.org/search?page=1&size=20&q=conceptrecid:"3908559"&sort=-version&all_versions=True
https://zenodo.org/search?page=1&size=20&q=conceptrecid:"3908559"&sort=-version&all_versions=True
https://app.roboflow.com
https://medium.com/analytics-vidhya/what-is-a-confusion-matrix-d1c0f8feda5#:~:text=A%20Confusion%20matrix%20is%20an,by%20the%20machine%20learning%20model.
https://medium.com/analytics-vidhya/what-is-a-confusion-matrix-d1c0f8feda5#:~:text=A%20Confusion%20matrix%20is%20an,by%20the%20machine%20learning%20model.
https://medium.com/analytics-vidhya/what-is-a-confusion-matrix-d1c0f8feda5#:~:text=A%20Confusion%20matrix%20is%20an,by%20the%20machine%20learning%20model.

X. Appendix

A. Google Colab Notebooks

6/14/23, 6:36 PM Pig_SP_Notebook.ipynb - Colaboratory

https://colab.research.google.com/drive/1orWlSQr0xjVmVI-2SvIuBQiu3wvIgBS3#scrollTo=K2b5V6v1LIqN&printMode=true 1/16

For Detection, it uses YOLOv5 with CSPDarknet as the backbone
For Interaction, it compares the IoU between the head and rear boxes and a calibrated interaction
threshold

Notebook by Joackin Santos

Interaction Notebook
https://colab.research.google.com/drive/1CI2BvEgGtwSc3Kg90TBE88AbD4fOZQgm?usp=sharing

Github Repository for this Notebook and the Web Application for Pig Contact Detection.
Link below:
https://github.com/joackinsantos/Pig-Contact-Detection-Web-App

Github Repository for the modi�ed YOLOv5.
Link below:
https://github.com/joackinsantos/YOLOv5-Modi�cation

Github Repository for the pig datasets.
Link below:
https://github.com/joackinsantos/pig-datasets

De�nition of Terms

Detection : of Head and Rear (Tail)
Contact : between Head and Rear (Tail)

Resource

https://github.com/ultralytics/yolov5
https://robo�ow.com/model/yolov5
https://colab.research.google.com/github/robo�ow-ai/notebooks/blob/main/notebooks/train-
yolov5-object-detection-on-custom-data.ipynb#scrollTo=t14hhyqdmw6O
https://docs.ultralytics.com/yolov5/tutorials/tips_for_best_training_results/

Pig Contact Detection System Using Convolutional Neural
Networks

Data Preprocessing was not necessary as the dataset was provided and preprocessed from:
https://doi.org/10.1016/j.biosystemseng.2022.10.002

Data Preprocessing, Annotations and Augmentations

79

6/14/23, 6:36 PM Pig_SP_Notebook.ipynb - Colaboratory

https://colab.research.google.com/drive/1orWlSQr0xjVmVI-2SvIuBQiu3wvIgBS3#scrollTo=K2b5V6v1LIqN&printMode=true 2/16

Dataset Information

2781 total pig pen images (1556 AFBI + 1225 AUF)

ROBOFLOW https://app.robo�ow.com/pigdataset/pig-parts/6
Annotations were included in the dataset in the COCO format. The images were uploaded in
Robo�ow to apply annotations and convert to YOLOv5 PyTorch annotations. Additionally, the
speci�ed data augmentation techniques were applied to the training set pre-export:

Augmentation Speci�cation

Flip Horizontal

Rotate 90°

Rotate -35°, +35°

Crop(Scaling) 0% min, 50% max

Brightness -20%, +20%

Dataset is exported after from Robo�ow and uploaded to Google Drive. The dataset is split to
(train,validation, and test) 70%:15%:15%.

DATASETS small datasets are fast training and testing of models

Augmented

small-pig-dataset
mid-pig-dataset
big-pig-dataset (set from previous work, not in correct format)

Non-augmented

o-small-pig-dataset
o-mid-pig-dataset

new datasets, same augmentations but a few new tweaks to improve detection

midN-pig-dataset (uses 70%:30%, training & validation spit)
midNBG-pig-dataset (same split but with background images)

Resource for Background Images:
removed pigs from images https://cleanup.pictures/

Dataset Setup

from google.colab import drive
drive.mount('/content/drive')

data path for annotated datasets using coco
aug_big_ds_path = '/content/drive/MyDrive/Special-Problem-2023/pig-datasets/augmented/big-p

6/14/23, 6:36 PM Pig_SP_Notebook.ipynb - Colaboratory

https://colab.research.google.com/drive/1orWlSQr0xjVmVI-2SvIuBQiu3wvIgBS3#scrollTo=K2b5V6v1LIqN&printMode=true 3/16

data paths for annotated datasets from roboflow using PyTorch
aug_small_ds_path = '/content/drive/MyDrive/Special-Problem-2023/pig-datasets/augmented/sma
naug_small_ds_path = '/content/drive/MyDrive/Special-Problem-2023/pig-datasets/non-augmente
aug_mid_ds_path = '/content/drive/MyDrive/Special-Problem-2023/pig-datasets/augmented/mid-p
naug_mid_ds_path = '/content/drive/MyDrive/Special-Problem-2023/pig-datasets/non-augmented/

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.moun

clone repository containing yolov5 and datasets
rename pig-datasets repo to datasets for yolov5
%cd /content
!git clone https://github.com/joackinsantos/YOLOv5-Modification
!git clone https://github.com/joackinsantos/pig-datasets datasets

/content
Cloning into 'YOLOv5-Modification'...
remote: Enumerating objects: 9888, done.
remote: Counting objects: 100% (80/80), done.
remote: Compressing objects: 100% (44/44), done.
remote: Total 9888 (delta 39), reused 69 (delta 34), pack-reused 9808
Receiving objects: 100% (9888/9888), 242.67 MiB | 32.49 MiB/s, done.
Resolving deltas: 100% (123/123), done.
Cloning into 'datasets'...
remote: Enumerating objects: 54055, done.
remote: Counting objects: 100% (9623/9623), done.
remote: Compressing objects: 100% (9616/9616), done.
remote: Total 54055 (delta 7), reused 9623 (delta 7), pack-reused 44432
Receiving objects: 100% (54055/54055), 1.21 GiB | 43.30 MiB/s, done.
Resolving deltas: 100% (60/60), done.
Updating files: 100% (59989/59989), done.

data path for annotated dataset using coco
original_data_path = '/content/datasets/big-pig-dataset'

data path for annotated datasets from roboflow using PyTorch
aug_small_ds_path = '/content/datasets/small-pig-dataset'
naug_small_ds_path = '/content/datasets/o-small-pig-dataset'
aug_mid_ds_path = '/content/datasets/mid-pig-dataset'
naug_mid_ds_path = '/content/datasets/o-mid-pig-dataset'
aug_midN_ds_path = '/content/datasets/midN-pig-dataset'
aug_midNBG_ds_path = '/content/datasets/midNBG-pig-dataset'

%ls

datasets/ sample_data/ YOLOv5-Modification/

for folder deletions
import shutil

6/14/23, 6:36 PM Pig_SP_Notebook.ipynb - Colaboratory

https://colab.research.google.com/drive/1orWlSQr0xjVmVI-2SvIuBQiu3wvIgBS3#scrollTo=K2b5V6v1LIqN&printMode=true 4/16

shutil.rmtree('/content/datasets')

Model Setup

clone YOLOv5 repository
%cd YOLOv5-Modification
!pip install -r requirements.txt # install dependencies (ignore errors)

/content/YOLOv5-Modification
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/publ
Collecting gitpython>=3.1.30 (from -r requirements.txt (line 5))
 Downloading GitPython-3.1.31-py3-none-any.whl (184 kB)
 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 184.3/184.3 kB 4.9 MB/s eta 0:00:00
Requirement already satisfied: matplotlib>=3.3 in /usr/local/lib/python3.10/dist-package
Requirement already satisfied: numpy>=1.18.5 in /usr/local/lib/python3.10/dist-packages
Requirement already satisfied: opencv-python>=4.1.1 in /usr/local/lib/python3.10/dist-pa
Requirement already satisfied: Pillow>=7.1.2 in /usr/local/lib/python3.10/dist-packages
Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from -
Requirement already satisfied: PyYAML>=5.3.1 in /usr/local/lib/python3.10/dist-packages
Requirement already satisfied: requests>=2.23.0 in /usr/local/lib/python3.10/dist-packag
Requirement already satisfied: scipy>=1.4.1 in /usr/local/lib/python3.10/dist-packages (
Collecting thop>=0.1.1 (from -r requirements.txt (line 14))
 Downloading thop-0.1.1.post2209072238-py3-none-any.whl (15 kB)
Requirement already satisfied: torch>=1.7.0 in /usr/local/lib/python3.10/dist-packages (
Requirement already satisfied: torchvision>=0.8.1 in /usr/local/lib/python3.10/dist-pack
Requirement already satisfied: tqdm>=4.64.0 in /usr/local/lib/python3.10/dist-packages (
Requirement already satisfied: pandas>=1.1.4 in /usr/local/lib/python3.10/dist-packages
Requirement already satisfied: seaborn>=0.11.0 in /usr/local/lib/python3.10/dist-package
Requirement already satisfied: setuptools>=65.5.1 in /usr/local/lib/python3.10/dist-pack
Collecting gitdb<5,>=4.0.1 (from gitpython>=3.1.30->-r requirements.txt (line 5))
 Downloading gitdb-4.0.10-py3-none-any.whl (62 kB)
 ━━ 62.7/62.7 kB 7.7 MB/s eta 0:00:00
Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packag
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (
Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packa
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packa
Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-package
Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packag
Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-pa
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-p
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-pack
Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.10/di
Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (
Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from
Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packa
Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from to
Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from
Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from t
Requirement already satisfied: triton==2.0.0 in /usr/local/lib/python3.10/dist-packages
Requirement already satisfied: cmake in /usr/local/lib/python3.10/dist-packages (from tr
Requirement already satisfied: lit in /usr/local/lib/python3.10/dist-packages (from trit
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (

6/14/23, 6:36 PM Pig_SP_Notebook.ipynb - Colaboratory

https://colab.research.google.com/drive/1orWlSQr0xjVmVI-2SvIuBQiu3wvIgBS3#scrollTo=K2b5V6v1LIqN&printMode=true 5/16

Collecting smmap<6,>=3.0.1 (from gitdb<5,>=4.0.1->gitpython>=3.1.30->-r requirements.txt
 Downloading smmap-5.0.0-py3-none-any.whl (24 kB)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-package
Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (
Installing collected packages: smmap, gitdb, gitpython, thop
Successfully installed gitdb-4.0.10 gitpython-3.1.31 smmap-5.0.0 thop-0.1.1.post22090722

pytorch setup
import torch

from IPython.display import Image, clear_output # to display images
from utils.downloads import attempt_download # to download models/datasets

clear_output()
print('Setup complete. Using torch %s %s' % (torch.__version__, torch.cuda.get_device_propert

Setup complete. Using torch 2.0.1+cu118 _CudaDeviceProperties(name='Tesla T4', major=7,

Displaying Dataset Formats

augmented/{small,mid,big}-pig-dataset
%cat {aug_small_ds_path}/data.yaml

path: ../datasets/small-pig-dataset
train: ../train/images
val: ../valid/images
test: ../test/images

nc: 2
names: ['Head', 'Rear']

roboflow:
 workspace: pigdataset
 project: pig-parts
 version: 1
 license: CC BY 4.0
 url: https://universe.roboflow.com/pigdataset/pig-parts/dataset/1

non-augmented/{small,mid}-pig-dataset
%cat {naug_small_ds_path}/data.yaml

path: ../datasets/o-small-pig-dataset
train: ../train/images
val: ../valid/images
test: ../test/images

6/14/23, 6:36 PM Pig_SP_Notebook.ipynb - Colaboratory

https://colab.research.google.com/drive/1orWlSQr0xjVmVI-2SvIuBQiu3wvIgBS3#scrollTo=K2b5V6v1LIqN&printMode=true 6/16

nc: 2
names: ['Head', 'Rear']

roboflow:
 workspace: pigdataset
 project: small-pigset-noaugment
 version: 1
 license: CC BY 4.0
 url: https://universe.roboflow.com/pigdataset/small-pigset-noaugment/dataset/1

robo�ow urls are no longer accessible

De�ning Model Con�guration and Architecture

default yolov5m architecture
%cat /content/YOLOv5-Modification/models/custom_yolov5m.yaml

YOLOv5 🚀 by Ultralytics, AGPL-3.0 license

Parameters
nc: 2 # number of classes
depth_multiple: 0.67 # model depth multiple
width_multiple: 0.75 # layer channel multiple
anchors:
 - [10,13, 16,30, 33,23] # P3/8
 - [30,61, 62,45, 59,119] # P4/16
 - [116,90, 156,198, 373,326] # P5/32

YOLOv5 v6.0 backbone
backbone:
 # [from, number, module, args]
 [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
 [-1, 3, C3, [128]],
 [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
 [-1, 6, C3, [256]],
 [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
 [-1, 9, C3, [512]],
 [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
 [-1, 3, C3, [1024]],
 [-1, 1, SPPF, [1024, 5]], # 9
]

YOLOv5 v6.0 head
head:
 [[-1, 1, Conv, [512, 1, 1]],
 [-1, 1, nn.Upsample, [None, 2, 'nearest']],
 [[-1, 6], 1, Concat, [1]], # cat backbone P4
 [-1, 3, C3, [512, False]], # 13

 [-1, 1, Conv, [256, 1, 1]],

6/14/23, 6:36 PM Pig_SP_Notebook.ipynb - Colaboratory

https://colab.research.google.com/drive/1orWlSQr0xjVmVI-2SvIuBQiu3wvIgBS3#scrollTo=K2b5V6v1LIqN&printMode=true 7/16

 [-1, 1, nn.Upsample, [None, 2, 'nearest']],
 [[-1, 4], 1, Concat, [1]], # cat backbone P3
 [-1, 3, C3, [256, False]], # 17 (P3/8-small)

 [-1, 1, Conv, [256, 3, 2]],
 [[-1, 14], 1, Concat, [1]], # cat head P4
 [-1, 3, C3, [512, False]], # 20 (P4/16-medium)

 [-1, 1, Conv, [512, 3, 2]],
 [[-1, 10], 1, Concat, [1]], # cat head P5
 [-1, 3, C3, [1024, False]], # 23 (P5/32-large)

 [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

This section is for con�guring your own yaml �les

get classes {num_classes} from yaml
import yaml
with open(aug_small_ds_path + "/data.yaml", 'r') as stream:
 num_classes = str(yaml.safe_load(stream)['nc'])

#customize iPython writefile so we can write variables
from IPython.core.magic import register_line_cell_magic

@register_line_cell_magic
def writetemplate(line, cell):
 with open(line, 'w') as f:
 f.write(cell.format(**globals()))

here we can con�gure our own architecture

%%writetemplate /content/YOLOv5-Modification/models/custom_yolov5l.yaml

Parameters
nc: {num_classes} # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
 - [10,13, 16,30, 33,23] # P3/8
 - [30,61, 62,45, 59,119] # P4/16
 - [116,90, 156,198, 373,326] # P5/32

YOLOv5 v6.0 backbone
backbone:
 # [from, number, module, args]
 [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4

6/14/23, 6:36 PM Pig_SP_Notebook.ipynb - Colaboratory

https://colab.research.google.com/drive/1orWlSQr0xjVmVI-2SvIuBQiu3wvIgBS3#scrollTo=K2b5V6v1LIqN&printMode=true 8/16

 [-1, 3, C3, [128]],
 [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
 [-1, 6, C3, [256]],
 [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
 [-1, 9, C3, [512]],
 [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
 [-1, 3, C3, [1024]],
 [-1, 1, SPPF, [1024, 5]], # 9
]

YOLOv5 v6.0 head
head:
 [[-1, 1, Conv, [512, 1, 1]],
 [-1, 1, nn.Upsample, [None, 2, 'nearest']],
 [[-1, 6], 1, Concat, [1]], # cat backbone P4
 [-1, 3, C3, [512, False]], # 13

 [-1, 1, Conv, [256, 1, 1]],
 [-1, 1, nn.Upsample, [None, 2, 'nearest']],
 [[-1, 4], 1, Concat, [1]], # cat backbone P3
 [-1, 3, C3, [256, False]], # 17 (P3/8-small)

 [-1, 1, Conv, [256, 3, 2]],
 [[-1, 14], 1, Concat, [1]], # cat head P4
 [-1, 3, C3, [512, False]], # 20 (P4/16-medium)

 [-1, 1, Conv, [512, 3, 2]],
 [[-1, 10], 1, Concat, [1]], # cat head P5
 [-1, 3, C3, [1024, False]], # 23 (P5/32-large)

 [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

Directory for Created Architectures
always 2 classes

backbone �lename

YOLOv5s-CSPDarkNet custom_yolov5s.yaml

YOLOv5m-CSPDarkNet custom_yolov5m.yaml

YOLOv5l-CSPDarkNet ccustom_yolov5l.yaml

Custom Training using YOLOv5

Hyperparameter Tuning
These are the expected parameters and its arguments to be tuned:

6/14/23, 6:36 PM Pig_SP_Notebook.ipynb - Colaboratory

https://colab.research.google.com/drive/1orWlSQr0xjVmVI-2SvIuBQiu3wvIgBS3#scrollTo=K2b5V6v1LIqN&printMode=true 9/16

parameter argument

epoch 50, 100

pixel size 400, 500, 600

batch size 8, 16, 32

train.py parameters:

img: de�ne input image size
batch: determine batch size
epochs: de�ne the number of training epochs. (Note: often, 3000+ are common here!)
data: set the path to our yaml �le
cfg: specify our model con�guration
weights: specify a custom path to weights. (Note: you can download weights from the
Ultralytics Google Drive folder)
name: result names
nosave: only save the �nal checkpoint
cache: cache images for faster training

img_size = 600
batch_size = 8
epochs = 100

train yolov5s on custom data for 100 epochs
time its performance
result file name {aug}_{data size}_{yolo size}_{img size}_{batch size}_{epochs}

%%time
%cd /content/YOLOv5-Modification/
!python train.py --img {img_size} --batch {batch_size} --epochs {epochs} --data {aug_midNBG_d

/content/YOLOv5-Modification
train: weights=, cfg=./models/custom_yolov5m.yaml, data=/content/datasets/midNBG-pig
warning: no common commits
remote: Enumerating objects: 15705, done.
remote: Counting objects: 100% (33/33), done.
remote: Compressing objects: 100% (27/27), done.
remote: Total 15705 (delta 9), reused 23 (delta 6), pack-reused 15672
Receiving objects: 100% (15705/15705), 14.50 MiB | 25.38 MiB/s, done.
Resolving deltas: 100% (10754/10754), done.
From https://github.com/ultralytics/yolov5
 * [new branch] add/weights_dir -> ultralytics/add/weights_dir
 * [new branch] benchmarks -> ultralytics/benchmarks
 * [new branch] exp/scaleFill -> ultralytics/exp/scaleFill
 * [new branch] exp12 -> ultralytics/exp12
 * [new branch] exp13 -> ultralytics/exp13
 * [new branch] exp13-nosoft -> ultralytics/exp13-nosoft
 * [new branch] exp13-soft -> ultralytics/exp13-soft

6/14/23, 6:36 PM Pig_SP_Notebook.ipynb - Colaboratory

https://colab.research.google.com/drive/1orWlSQr0xjVmVI-2SvIuBQiu3wvIgBS3#scrollTo=K2b5V6v1LIqN&printMode=true 10/16

 * [new branch] fix/rgb_albumentations -> ultralytics/fix/rgb_albumentations
 * [new branch] ghost -> ultralytics/ghost
 * [new branch] master -> ultralytics/master
 * [new branch] snyk-fix-09d8acaff69195c641ab1e77119e4c6b -> ultralytics/snyk-f
 * [new branch] snyk-fix-6c9eeb3b0a7596bd3087093a737a3c49 -> ultralytics/snyk-f
 * [new branch] study_activations -> ultralytics/study_activations
 * [new branch] ultralytics/HUB -> ultralytics/ultralytics/HUB
 * [new branch] update/cls-album -> ultralytics/update/cls-album
 * [new branch] update/textlogger -> ultralytics/update/textlogger
 * [new branch] update/threaded -> ultralytics/update/threaded
 * [new tag] v1.0 -> v1.0
 * [new tag] v2.0 -> v2.0
 * [new tag] v3.0 -> v3.0
 * [new tag] v3.1 -> v3.1
 * [new tag] v4.0 -> v4.0
 * [new tag] v5.0 -> v5.0
 * [new tag] v6.0 -> v6.0
 * [new tag] v6.1 -> v6.1
 * [new tag] v6.2 -> v6.2
 * [new tag] v7.0 -> v7.0
github: ⚠ YOLOv5 is out of date by 2656 commits. Use 'git pull ultralytics master'
requirements: /content/requirements.txt not found, check failed.
YOLOv5 🚀 12625aa8 Python-3.10.11 torch-2.0.1+cu118 CUDA:0 (Tesla T4, 15102MiB)

hyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epo
ClearML: run 'pip install clearml' to automatically track, visualize and remotely tr
Comet: run 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 run
TensorBoard: Start with 'tensorboard --logdir runs/train', view at http://localhost:
Downloading https://ultralytics.com/assets/Arial.ttf to /root/.config/Ultralytics/Ar
100% 755k/755k [00:00<00:00, 18.4MB/s]

 from n params module argument
 0 -1 1 5280 models.common.Conv [3, 48,
 1 -1 1 41664 models.common.Conv [48, 96,
 2 -1 2 65280 models.common.C3 [96, 96,
 3 -1 1 166272 models.common.Conv [96, 192
 4 -1 4 444672 models.common.C3 [192, 19
 5 -1 1 664320 models.common.Conv [192, 384
 6 -1 6 2512896 models.common.C3 [384, 384
7 -1 1 2655744 models.common.Conv [384, 76

Detection Model Evaluation

! python val.py --img {img_size} --batch-size {batch_size} --weights /content/YOLOv5-Modific

val: data=/content/datasets/midNBG-pig-dataset/data.yaml, weights=['/content/YOLOv5-Modi
requirements: /content/requirements.txt not found, check failed.
YOLOv5 🚀 12625aa8 Python-3.10.11 torch-2.0.1+cu118 CUDA:0 (Tesla T4, 15102MiB)

Fusing layers...
custom_YOLOv5m summary: 212 layers, 20856975 parameters, 0 gradients, 47.9 GFLOPs
WARNING ⚠ --img-size 600 must be multiple of max stride 32, updating to 608

6/14/23, 6:36 PM Pig_SP_Notebook.ipynb - Colaboratory

https://colab.research.google.com/drive/1orWlSQr0xjVmVI-2SvIuBQiu3wvIgBS3#scrollTo=K2b5V6v1LIqN&printMode=true 11/16

val: Scanning /content/datasets/midNBG-pig-dataset/valid/labels.cache... 610 images, 55
 Class Images Instances P R mAP50 mAP50-95
 all 610 10676 0.938 0.909 0.947 0.458
 Head 610 5281 0.936 0.904 0.945 0.462
 Rear 610 5395 0.94 0.914 0.949 0.454
Speed: 0.1ms pre-process, 9.5ms inference, 4.0ms NMS per image at shape (8, 3, 608, 608)
Results saved to runs/val/exp

Start tensorboard
Launch after you have started training
logs save in the folder "runs"
%load_ext tensorboard
%reload_ext tensorboard
%tensorboard --logdir runs

6/14/23, 6:36 PM Pig_SP_Notebook.ipynb - Colaboratory

https://colab.research.google.com/drive/1orWlSQr0xjVmVI-2SvIuBQiu3wvIgBS3#scrollTo=K2b5V6v1LIqN&printMode=true 12/16

Filter runs (regex)

train/aug_
midNBG_
m_600_8_
100

Run

Filter tags (regex) All Scalars Ima

Pin cards for a quick view and comparison

F1_curve

train/aug_midNBG… Step 99

PR_curve

train/aug_midNBG… Step 99

Pinned

F1_curve

PR_curve

TensorBoard INACTIME SERIES SCALARS IMAGES

Running Inference with Trained Weights

%ls

Testing

this is for testing
!python detect.py --weights ./runs/train/aug_midNBG_m_{img_size}_{batch_size}_{epochs}/weight

detect: weights=['./runs/train/aug_midNBG_m_600_8_100/weights/best.pt'], source=../d
requirements: /content/requirements.txt not found, check failed.
YOLOv5 🚀 12625aa8 Python-3.10.11 torch-2.0.1+cu118 CUDA:0 (Tesla T4, 15102MiB)

Fusing layers...
custom_YOLOv5m summary: 212 layers, 20856975 parameters, 0 gradients, 47.9 GFLOPs
WARNING ⚠ --img-size [600, 600] must be multiple of max stride 32, updating to [608
image 1/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_-
image 2/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_-
image 3/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_-
image 4/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_-
image 5/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_-
image 6/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_-
image 7/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_-
image 8/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_-
image 9/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_-
image 10/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 11/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 12/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 13/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 14/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 15/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 16/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 17/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 18/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 19/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 20/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 21/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 22/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 23/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 24/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 25/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 26/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_

6/14/23, 6:36 PM Pig_SP_Notebook.ipynb - Colaboratory

https://colab.research.google.com/drive/1orWlSQr0xjVmVI-2SvIuBQiu3wvIgBS3#scrollTo=K2b5V6v1LIqN&printMode=true 13/16

image 27/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 28/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 29/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 30/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 31/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 32/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 33/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 34/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 35/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 36/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 37/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 38/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 39/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 40/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 41/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 42/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 43/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 44/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 45/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 46/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 47/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 48/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 49/610 /content/datasets/midNBG-pig-dataset/valid/images/2016_02_07__07_15_47_
image 50/610 /content/datasets/midNBG-pig-dataset/valid/images/2016 02 07 07 15 47

Display Inferences

import glob
from IPython.display import Image, display

for imageName in glob.glob('/content/YOLOv5-Modification/runs/detect/exp/*.jpg'): #assuming J
 display(Image(filename=imageName))
 print("\n")

download the folder for training results
download the folder for detect results

Collecting training results, testing results

!zip -r /content/train.zip /content/YOLOv5-Modification/runs/train/aug_midNBG_m_{img_size}_{b

 adding: content/YOLOv5-Modification/runs/train/aug_midNBG_m_600_8_100/ (stored 0%)
 adding: content/YOLOv5-Modification/runs/train/aug_midNBG_m_600_8_100/val_batch1_pred
 adding: content/YOLOv5-Modification/runs/train/aug_midNBG_m_600_8_100/opt.yaml (deflat
 adding: content/YOLOv5-Modification/runs/train/aug_midNBG_m_600_8_100/weights/ (stored
 adding: content/YOLOv5-Modification/runs/train/aug_midNBG_m_600_8_100/weights/best.pt
 adding: content/YOLOv5-Modification/runs/train/aug_midNBG_m_600_8_100/weights/last.pt
 adding: content/YOLOv5-Modification/runs/train/aug_midNBG_m_600_8_100/val_batch2_label
 adding: content/YOLOv5-Modification/runs/train/aug_midNBG_m_600_8_100/F1_curve.png (de

6/14/23, 6:36 PM Pig_SP_Notebook.ipynb - Colaboratory

https://colab.research.google.com/drive/1orWlSQr0xjVmVI-2SvIuBQiu3wvIgBS3#scrollTo=K2b5V6v1LIqN&printMode=true 14/16

 adding: content/YOLOv5-Modification/runs/train/aug_midNBG_m_600_8_100/train_batch1.jpg
 adding: content/YOLOv5-Modification/runs/train/aug_midNBG_m_600_8_100/results.csv (def
 adding: content/YOLOv5-Modification/runs/train/aug_midNBG_m_600_8_100/val_batch0_pred
 adding: content/YOLOv5-Modification/runs/train/aug_midNBG_m_600_8_100/train_batch0.jpg
 adding: content/YOLOv5-Modification/runs/train/aug_midNBG_m_600_8_100/R_curve.png (def
 adding: content/YOLOv5-Modification/runs/train/aug_midNBG_m_600_8_100/hyp.yaml (deflat
 adding: content/YOLOv5-Modification/runs/train/aug_midNBG_m_600_8_100/PR_curve.png (de
 adding: content/YOLOv5-Modification/runs/train/aug_midNBG_m_600_8_100/confusion_matrix
 adding: content/YOLOv5-Modification/runs/train/aug_midNBG_m_600_8_100/labels_correlogr
 adding: content/YOLOv5-Modification/runs/train/aug_midNBG_m_600_8_100/train_batch2.jpg
 adding: content/YOLOv5-Modification/runs/train/aug_midNBG_m_600_8_100/val_batch1_label
 adding: content/YOLOv5-Modification/runs/train/aug_midNBG_m_600_8_100/val_batch0_label
 adding: content/YOLOv5-Modification/runs/train/aug_midNBG_m_600_8_100/labels.jpg (defl
 adding: content/YOLOv5-Modification/runs/train/aug_midNBG_m_600_8_100/P_curve.png (def
 adding: content/YOLOv5-Modification/runs/train/aug_midNBG_m_600_8_100/events.out.tfeve
 adding: content/YOLOv5-Modification/runs/train/aug_midNBG_m_600_8_100/val_batch2_pred
 adding: content/YOLOv5-Modification/runs/train/aug_midNBG_m_600_8_100/results.png (def

!zip -r /content/exp.zip /content/YOLOv5-Modification/runs/detect/exp

 adding: content/YOLOv5-Modification/runs/detect/exp/ (stored 0%)
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_10_20__00_01_26_-826-0003
 adding: content/YOLOv5-Modification/runs/detect/exp/Pen2_201911081153GP041615-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/Pen1_201911081208GP051730-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/bg_colored-60-_jpg.rf.f96c7613
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_02_07__07_15_47_-831-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/Pen2_201911081229GP061615-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_09_18__00_07_12_-856-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_09_19__00_07_12_-856-0002
 adding: content/YOLOv5-Modification/runs/detect/exp/Pen1_201912121218GP061858-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_02_07__07_15_47_-836-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_09_21__00_01_26_-856-0005
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_09_19__00_07_12_-856-0002
 adding: content/YOLOv5-Modification/runs/detect/exp/Pen1_201911261541GP171855-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_09_20__00_01_26_-856-00004
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_09_20__00_02_53_-848-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_09_18__00_07_12_-856-0001
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_10_18__00_01_26_-837-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/Pen1_201911261448GP141855-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_10_19__00_01_26_-837-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_09_21__00_01_26_-856-00054
 adding: content/YOLOv5-Modification/runs/detect/exp/bg_colored-95-_jpg.rf.5147e2b34
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_02_07__07_15_47_-822-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_09_21__00_08_39_-848-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_09_18__00_07_12_-856-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_10_20__00_01_26_-837-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_02_07__07_15_47_-823-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_09_21__00_08_39_-848-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_02_07__07_15_47_-822-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_09_20__00_01_26_-856-00004
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_10_21__00_01_26_-837-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_10_21__00_01_26_-826-0005
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_02_07__07_15_47_-822-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_10_21__00_01_26_-826-0005

6/14/23, 6:36 PM Pig_SP_Notebook.ipynb - Colaboratory

https://colab.research.google.com/drive/1orWlSQr0xjVmVI-2SvIuBQiu3wvIgBS3#scrollTo=K2b5V6v1LIqN&printMode=true 15/16

 adding: content/YOLOv5-Modification/runs/detect/exp/Pen2_201911081340GP101615-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_10_18__00_01_26_-837-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/Pen1_201912121218GP061858-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/Pen2_201911081136GP031615-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/Pen1_201911081057GP011730-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_10_18__00_01_26_-837-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_10_18__00_01_26_-837-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_09_18__00_07_12_-856-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_09_20__00_02_53_-848-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_10_20__00_01_26_-826-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/bg_mono-42-_jpg.rf.033985260bb4
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_02_07__07_15_47_-822-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/Pen1_201912121143GP041858-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_09_20__00_01_26_-856-0004
 adding: content/YOLOv5-Modification/runs/detect/exp/Pen1_201911261430GP131855-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/Pen1_201912121218GP061858-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_10_21__00_01_26_-837-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/Pen1_201912121201GP051858-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/bg_colored-110-_jpg.rf.581c7d1
 adding: content/YOLOv5-Modification/runs/detect/exp/Pen1_201911081208GP051730-0000
 adding: content/YOLOv5-Modification/runs/detect/exp/2016_09_21__00_01_26_-856-0005
 adding: content/YOLOv5-Modification/runs/detect/exp/bg_colored-120-_jpg.rf.09cf94d
adding: content/YOLOv5-Modification/runs/detect/exp/Pen1 201911081057GP011730-0000

from google.colab import files

files.download("/content/train.zip")

files.download("/content/exp.zip")

delete zips to follow naming

6/14/23, 6:44 PM Pig_SP_Notebook_Interaction.ipynb - Colaboratory

https://colab.research.google.com/drive/1CI2BvEgGtwSc3Kg90TBE88AbD4fOZQgm#scrollTo=tJNXMNG-0jdi&printMode=true 1/12

For Detection, it uses YOLOv5 with CSPDarknet as the backbone
For Interaction, it compares the IoU between the head and rear boxes and a calibrated interaction
threshold

Notebook by Joackin Santos

Main Notebook: https://colab.research.google.com/drive/1orWlSQr0xjVmVI-2SvIuBQiu3wvIgBS3?
usp=sharing

This is the accompanying notebook for the Pig Contact Detection System. This notebook uses the
weights (*.pt) from the trained models to output the coordinates of the bounding boxes from
detect.py of YOLOv5. The output is used to get the IoU (Intersection over Union) of the heads and
rears in an image. This will be used to compute for interaction, based on a calibrated IoU threshold.

This will use the AFBI and AUF datasets to get predictions and truth values (annotated) to evaluate
the interaction method.

Upon evaluation of the best threshold, the method will be extracted for single image use, to be
integrated to the website application.

Pig Contact Detection System Using Convolutional Neural
Networks

Setup

for folder deletions
import shutil
shutil.rmtree('/content/YOLOv5-Modification')

Cloning Repositories

clone repository containing yolov5 and datasets
rename pig-datasets repo to datasets for yolov5
%cd /content
!git clone -b interaction-method https://github.com/joackinsantos/YOLOv5-Modification
!git clone https://github.com/joackinsantos/pig-datasets datasets

/content
Cloning into 'YOLOv5-Modification'...
remote: Enumerating objects: 9895, done.
remote: Counting objects: 100% (87/87), done.
remote: Compressing objects: 100% (50/50), done.

6/14/23, 6:44 PM Pig_SP_Notebook_Interaction.ipynb - Colaboratory

https://colab.research.google.com/drive/1CI2BvEgGtwSc3Kg90TBE88AbD4fOZQgm#scrollTo=tJNXMNG-0jdi&printMode=true 2/12

remote: Total 9895 (delta 41), reused 79 (delta 35), pack-reused 9808
Receiving objects: 100% (9895/9895), 475.52 MiB | 23.79 MiB/s, done.
Resolving deltas: 100% (125/125), done.
Updating files: 100% (162/162), done.
Cloning into 'datasets'...
remote: Enumerating objects: 54055, done.
remote: Counting objects: 100% (9623/9623), done.
remote: Compressing objects: 100% (9616/9616), done.
remote: Total 54055 (delta 7), reused 9623 (delta 7), pack-reused 44432
Receiving objects: 100% (54055/54055), 1.21 GiB | 20.08 MiB/s, done.
Resolving deltas: 100% (60/60), done.
Updating files: 100% (59989/59989), done.

Data Paths

resource paths
AFBI_path = '/content/datasets/interaction-set/AFBI'
AUF_path = '/content/datasets/interaction-set/AUF'
Combined_path = '/content/datasets/interaction-set/Combined'
Combined_csv_path = '/content/datasets/interaction-set/Combined.csv'
img_AFBI_path = '/content/datasets/interaction-set/AFBI/AFBI001.jpg'
img_AUF_path = '/content/datasets/interaction-set/AUF/AUPF190.jpg'
weight_path = '/content/YOLOv5-Modification/test-weights/'

%ls

datasets/ sample_data/ YOLOv5-Modification/

Detection detect.py was modi�ed to extract bounding box properties such as:

image names
con�dence scores
class�cation and class index
minX, minY, maxX, maxY

This is exported as the "bounding-boxes.csv" �le

This uses the detect.py from YOLOv5 ultralytics repository

%cd /content/YOLOv5-Modification
!python detect.py --img 600 --weights {weight_path}/test.pt --source {Combined_path}

This is the detect implementation in the website (img size can be adjusted)

6/14/23, 6:44 PM Pig_SP_Notebook_Interaction.ipynb - Colaboratory

https://colab.research.google.com/drive/1CI2BvEgGtwSc3Kg90TBE88AbD4fOZQgm#scrollTo=tJNXMNG-0jdi&printMode=true 3/12

pytorch setup
%cd /content
import torch

from IPython.display import Image, clear_output # to display images
from utils.downloads import attempt_download # to download models/datasets

clear_output()
torch.cuda.empty_cache()
print('Setup complete. Using torch %s %s' % (torch.__version__, torch.cuda.get_device_propert

path_hubconfig = '/content/YOLOv5-Modification'
path_weightfile = '/content/YOLOv5-Modification/best-weights/aug_midNBG_m_600_8_100.pt'

import torch
import os

img_size = 500

img_AFBI_path = '/content/datasets/interaction-set/AFBI/AFBI001.jpg'
img_AUF_path = '/content/datasets/interaction-set/AUF/AUPF190.jpg'

model = torch.hub.load(path_hubconfig, 'custom',
 path=path_weightfile, source='local',)

jpg_files = []

for filename in os.listdir(Combined_path):
 if filename.endswith(".jpg"):
 # print(filename)
 file_path = os.path.join(Combined_path, filename)
 jpg_files.append(file_path)

to sort in order of the true value file "Combined csv"
jpg_files.sort()
print(jpg_files)
print(len(jpg_files))

results_torch = model(jpg_files, size=img_size)
results_torch.print()

YOLOv5 🚀 1cd2751 Python-3.10.11 torch-2.0.1+cu118 CUDA:0 (Tesla V100-SXM2-16GB, 161

requirements: /content/requirements.txt not found, check failed.
Fusing layers...
custom_YOLOv5m summary: 212 layers, 20856975 parameters, 0 gradients
Adding AutoShape...
['/content/datasets/interaction-set/Combined/AFBI001.jpg', '/content/datasets/intera
image 1/738: 411x811 9 Heads, 8 Rears
image 2/738: 411x811 8 Heads, 8 Rears
image 3/738: 411x811 8 Heads, 8 Rears

6/14/23, 6:44 PM Pig_SP_Notebook_Interaction.ipynb - Colaboratory

https://colab.research.google.com/drive/1CI2BvEgGtwSc3Kg90TBE88AbD4fOZQgm#scrollTo=tJNXMNG-0jdi&printMode=true 4/12

image 4/738: 411x811 9 Heads, 9 Rears
image 5/738: 411x811 9 Heads, 8 Rears
image 6/738: 411x811 8 Heads, 8 Rears
image 7/738: 411x811 8 Heads, 9 Rears
image 8/738: 411x811 9 Heads, 7 Rears
image 9/738: 411x811 10 Heads, 9 Rears
image 10/738: 411x811 8 Heads, 9 Rears
image 11/738: 411x811 8 Heads, 9 Rears
image 12/738: 411x811 9 Heads, 9 Rears
image 13/738: 411x811 8 Heads, 9 Rears
image 14/738: 411x811 8 Heads, 8 Rears
image 15/738: 411x811 7 Heads, 9 Rears
image 16/738: 411x811 9 Heads, 9 Rears
image 17/738: 411x811 9 Heads, 9 Rears
image 18/738: 411x811 9 Heads, 8 Rears
image 19/738: 411x811 9 Heads, 9 Rears
image 20/738: 411x811 10 Heads, 12 Rears
image 21/738: 411x811 10 Heads, 8 Rears
image 22/738: 411x811 9 Heads, 9 Rears
image 23/738: 411x811 9 Heads, 9 Rears
image 24/738: 411x811 9 Heads, 9 Rears
image 25/738: 411x811 10 Heads, 9 Rears
image 26/738: 411x811 7 Heads, 9 Rears
image 27/738: 411x811 8 Heads, 9 Rears
image 28/738: 411x811 10 Heads, 8 Rears
image 29/738: 411x811 9 Heads, 9 Rears
image 30/738: 411x811 8 Heads, 8 Rears
image 31/738: 411x811 9 Heads, 10 Rears
image 32/738: 411x811 9 Heads, 9 Rears
image 33/738: 411x811 10 Heads, 11 Rears
image 34/738: 411x811 10 Heads, 9 Rears
image 35/738: 411x811 10 Heads, 10 Rears
image 36/738: 411x811 9 Heads, 11 Rears
image 37/738: 411x811 10 Heads, 11 Rears
image 38/738: 411x811 9 Heads, 10 Rears
image 39/738: 411x811 10 Heads, 10 Rears
image 40/738: 411x811 9 Heads, 9 Rears
image 41/738: 411x811 11 Heads, 9 Rears
image 42/738: 411x811 10 Heads, 10 Rears
image 43/738: 411x811 11 Heads, 10 Rears
image 44/738: 411x811 11 Heads, 10 Rears
image 45/738: 411x811 12 Heads, 10 Rears
image 46/738: 411x811 11 Heads, 10 Rears
image 47/738: 411x811 12 Heads, 11 Rears
image 48/738: 411x811 10 Heads, 10 Rears
image 49/738: 411x811 10 Heads, 10 Rears
image 50/738: 411x811 10 Heads 10 Rears

sample df of bounding-box csv
%cd /content/YOLOv5-Modification
import pandas as pd

df = pd.read_csv('test.csv')
df

6/14/23, 6:44 PM Pig_SP_Notebook_Interaction.ipynb - Colaboratory

https://colab.research.google.com/drive/1CI2BvEgGtwSc3Kg90TBE88AbD4fOZQgm#scrollTo=tJNXMNG-0jdi&printMode=true 5/12

This is the Interaction Method (detect.py)

%cd /content/YOLOv5-Modification
import pandas as pd
import os

df = pd.read_csv('bounding-boxes.csv')

variables
iou_threshold = 0.05

df results
results_df = pd.DataFrame(columns=['Image_Name', 'Classification', 'Interaction_Count'])

def compute_interactions(data, threshold, results):
 # unique image names
 image_names = data['Image_Name'].unique()

 # loop for each unique name
 for name in image_names:
 # interaction variables
 interaction_flag = False
 interaction_count = 0

 # subset dataframe with this image name
 name_df = data[data['Image_Name'] == name]

 # subset dataframes of heads and rears
 head_df = name_df[name_df['Object_Name'] == 'Head'].reset_index(drop=True)
 rear_df = name_df[name_df['Object_Name'] == 'Rear'].reset_index(drop=True)

 # loop over heads and rears in the image
 for i, head_row in head_df.iterrows():
 for j, rear_row in rear_df.iterrows():
 # bounding box indexing
 # df[4] = minX, df[5] = maxX, df[6] = minY, df[7] = maxY

 head_minX = head_df.iloc[i, 4]
 head_maxX = head_df.iloc[i, 5]
 head_minY = head_df.iloc[i, 6]
 head_maxY = head_df.iloc[i, 7]

 rear_minX = rear_df.iloc[j, 4]
 rear_maxX = rear_df.iloc[j, 5]
 rear_minY = rear_df.iloc[j, 6]
 rear_maxY = rear_df.iloc[j, 7]

 # this is for the headBox and rearBox
 curr_iou = compute_iou(head_minX, head_maxX, head_minY, head_maxY,

6/14/23, 6:44 PM Pig_SP_Notebook_Interaction.ipynb - Colaboratory

https://colab.research.google.com/drive/1CI2BvEgGtwSc3Kg90TBE88AbD4fOZQgm#scrollTo=tJNXMNG-0jdi&printMode=true 6/12

 rear_minX, rear_maxX, rear_minY, rear_maxY)

 # print("computed the IoU:", curr_iou)

 if (curr_iou >= threshold):
 interaction_flag = True
 interaction_count += 1

 # # tester
 # print(i, j)
 # print(head_minX, head_minY, head_maxX, head_maxY)
 # print(rear_minX, rear_minY, rear_maxX, rear_maxY)

 temp_list = [name,
 1 if interaction_flag else 0,
 interaction_count]
 results.loc[len(results)] = temp_list
 return results

def compute_iou(head_minX, head_maxX, head_minY, head_maxY, rear_minX, rear_maxX, rear_minY,
 # determine (x,y) coordinates of the intersection rectangle
 x_left = max(head_minX, rear_minX)
 y_top = max(head_minY, rear_minY)
 x_right = min(head_maxX, rear_maxX)
 y_bottom = min(head_maxY, rear_maxY)

 # compute the area of intersection rectangle
 intersection_area = max(0, x_right - x_left + 1) * max(0, y_bottom - y_top + 1)

 # compute area of both prediction and ground-truth
 # rectangles
 headArea = (head_maxX - head_minX + 1) * (head_maxY - head_minY + 1)
 rearArea = (rear_maxX - rear_minX + 1) * (rear_maxY - rear_minY + 1)
 union_area = float(headArea + rearArea - intersection_area)

 # compute IoU
 iou = intersection_area / union_area
 return iou

res = compute_interactions(df, iou_threshold, results_df).copy()
if os.path.exists('results.csv'):
 os.remove('results.csv')
res.to_csv('results.csv', index=False)

print(res)

/content/YOLOv5-Modification

This is Interaction Method (PyTorch)

6/14/23, 6:44 PM Pig_SP_Notebook_Interaction.ipynb - Colaboratory

https://colab.research.google.com/drive/1CI2BvEgGtwSc3Kg90TBE88AbD4fOZQgm#scrollTo=tJNXMNG-0jdi&printMode=true 7/12

%cd /content/YOLOv5-Modification
import pandas as pd
import os

df format [xmin ymin xmax ymax confidence class name], xyxy index is the name
bb = results_torch.pandas().xyxy

variables
iou_threshold = 0.05

df results
results_df = pd.DataFrame(columns=['Classification', 'Interaction_Count'])

def compute_interactions(data, threshold, results):
 # loop for each unique name/ image
 for image in bb:
 # interaction variables
 interaction_flag = False
 interaction_count = 0

 # subset dataframe with this image name
 name_df = image

 # subset dataframes of heads and rears
 head_df = name_df[name_df['name'] == 'Head'].reset_index(drop=True)
 rear_df = name_df[name_df['name'] == 'Rear'].reset_index(drop=True)

 # loop over heads and rears in the image
 for i, head_row in head_df.iterrows():
 for j, rear_row in rear_df.iterrows():
 # bounding box indexing
 # df[0] = minX, df[1] = minY, df[2] = maxX, df[3] = maxY

 head_minX = head_df.iloc[i, 0]
 head_minY = head_df.iloc[i, 1]
 head_maxX = head_df.iloc[i, 2]
 head_maxY = head_df.iloc[i, 3]

 rear_minX = rear_df.iloc[j, 0]
 rear_minY = rear_df.iloc[j, 1]
 rear_maxX = rear_df.iloc[j, 2]
 rear_maxY = rear_df.iloc[j, 3]

 # this is for the headBox and rearBox
 curr_iou = compute_iou(head_minX, head_maxX, head_minY, head_maxY,
 rear_minX, rear_maxX, rear_minY, rear_maxY)

 # print("computed the IoU:", curr_iou)

 if (curr_iou >= threshold):

6/14/23, 6:44 PM Pig_SP_Notebook_Interaction.ipynb - Colaboratory

https://colab.research.google.com/drive/1CI2BvEgGtwSc3Kg90TBE88AbD4fOZQgm#scrollTo=tJNXMNG-0jdi&printMode=true 8/12

 interaction_flag = True
 interaction_count += 1

 # # tester
 # print(i, j)
 # print(head_minX, head_minY, head_maxX, head_maxY)
 # print(rear_minX, rear_minY, rear_maxX, rear_maxY)

 temp_list = [1 if interaction_flag else 0,
 interaction_count]
 results.loc[len(results)] = temp_list
 return results

def compute_iou(head_minX, head_maxX, head_minY, head_maxY, rear_minX, rear_maxX, rear_minY,
 # determine (x,y) coordinates of the intersection rectangle
 x_left = max(head_minX, rear_minX)
 y_top = max(head_minY, rear_minY)
 x_right = min(head_maxX, rear_maxX)
 y_bottom = min(head_maxY, rear_maxY)

 # compute the area of intersection rectangle
 intersection_area = max(0, x_right - x_left + 1) * max(0, y_bottom - y_top + 1)

 # compute area of both prediction and ground-truth
 # rectangles
 headArea = (head_maxX - head_minX + 1) * (head_maxY - head_minY + 1)
 rearArea = (rear_maxX - rear_minX + 1) * (rear_maxY - rear_minY + 1)
 union_area = float(headArea + rearArea - intersection_area)

 # compute IoU
 iou = intersection_area / union_area
 return iou

res = compute_interactions(bb, iou_threshold, results_df).copy()
if os.path.exists('results.csv'):
 os.remove('results.csv')
res.to_csv('results.csv', index=False)

print(res)

/content/YOLOv5-Modification

Evaluations

Getting and Processing Necessary Data

if os.path.exists(Combined_csv_path):
os.remove(Combined_csv_path)

6/14/23, 6:44 PM Pig_SP_Notebook_Interaction.ipynb - Colaboratory

https://colab.research.google.com/drive/1CI2BvEgGtwSc3Kg90TBE88AbD4fOZQgm#scrollTo=tJNXMNG-0jdi&printMode=true 9/12

pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)

True Values
truth_df = pd.read_csv(Combined_csv_path)
Changing column names, removing extra \', binarizing the classification
binarize = lambda x: 0 if x == 0 else 1

truth_df['Image_Name'] = truth_df['Image_Name'].str.replace('\'', '')
truth_df['Classification'] = truth_df['Classification'].apply(binarize)

truth_df

Getting truth_df counts
truth_df['is_AFBI'] = truth_df['Image_Name'].str.contains('AFBI').astype(int)
truth_df['is_AUF'] = truth_df['Image_Name'].str.contains('AUPF').astype(int)
AFBI_grouped = truth_df.groupby('is_AFBI')
AUF_grouped = truth_df.groupby('is_AUF')

This creates separated dfs for the two data sets
for name, group in AFBI_grouped:
 df_name = 'AFBI_group_df' if name else 'AUF_group_df'
 globals()[df_name] = group.copy()

truth = truth_df['Classification'].value_counts()
afbi = AFBI_group_df['Classification'].value_counts()
auf = AUF_group_df['Classification'].value_counts()
print("truth:\n", truth,'\n',"afbi:\n",afbi,'\n'," auf:\n",auf,'\n')

truth:
 0 456
1 282
Name: Classification, dtype: int64
 afbi:
 0 322
1 111
Name: Classification, dtype: int64
 auf:
 1 171
0 134
Name: Classification, dtype: int64

Predicted Values
pred_df = pd.read_csv('results.csv')
pred_df

Getting pred_df counts
pred_df['is_AFBI'] = pred_df['Image_Name'].str.contains('AFBI').astype(int)
pred_df['is_AUF'] = pred_df['Image_Name'].str.contains('AUPF').astype(int)

6/14/23, 6:44 PM Pig_SP_Notebook_Interaction.ipynb - Colaboratory

https://colab.research.google.com/drive/1CI2BvEgGtwSc3Kg90TBE88AbD4fOZQgm#scrollTo=tJNXMNG-0jdi&printMode=true 10/12

AFBI_grouped = pred_df.groupby('is_AFBI')

AUF_grouped = truth_df.groupby('is_AUF')

This creates separated dfs for the two data sets
for name, group in AFBI_grouped:
df_name = 'AFBI_group_df' if name else 'AUF_group_df'
globals()[df_name] = group.copy()

pred = pred_df['Classification'].value_counts()
afbi = AFBI_group_df['Classification'].value_counts()
auf = AUF_group_df['Classification'].value_counts()
print("pred:\n", pred,'\n',"afbi:\n",afbi,'\n'," auf:\n",auf,'\n')
print("pred:\n", pred)

pred:
 1 380
0 358
Name: Classification, dtype: int64

Evaluation Proper

print(truth_df.shape[0],
 pred_df.shape[0])

738 738

y_true = truth_df["Classification"]
y_pred = pred_df["Classification"]

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusio

accuracy = accuracy_score(y_true, y_pred)
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred)
confusion_matrix = confusion_matrix(y_true, y_pred)
mcc = matthews_corrcoef(y_true, y_pred)
n_mcc = (mcc + 1)/2 # normalize to set in range [0,1]
print("Accuracy:", accuracy)
print("Precision:", precision)
print("Recall:", recall)
print("F1 Score:", f1)
print("nMCC:", n_mcc)
print("Confusion Matrix:\n", confusion_matrix)

Accuracy: 0.7533875338753387
Precision: 0.631578947368421
Recall: 0.851063829787234
F1 Score: 0.7250755287009063

6/14/23, 6:44 PM Pig_SP_Notebook_Interaction.ipynb - Colaboratory

https://colab.research.google.com/drive/1CI2BvEgGtwSc3Kg90TBE88AbD4fOZQgm#scrollTo=tJNXMNG-0jdi&printMode=true 11/12

Colab paid products - Cancel contracts here

nMCC: 0.7644718895000668
Confusion Matrix:
 [[316 140]
 [42 240]]

import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
plt.clf()

assume y_true and y_pred are the true and predicted labels
cm = confusion_matrix(y_true, y_pred)

create a heatmap using seaborn
sns.heatmap(cm, annot=True, cmap="Blues", fmt="d")

add axis labels and title
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.title("Confusion Matrix")

show the plot
plt.show()
plt.savefig(f"conf_mat_{img_size}_{iou_threshold}.png")

from google.colab import files
files.download(f'/content/YOLOv5-Modification/conf_mat_{img_size}_{iou_threshold}.png')

B. Source Code

1. Django Web Framework

views.py (contains methods)

import io

import os

import cv2

import torch

import shutil

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from PIL import Image as im

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix

from django.core.exceptions import *

from django.shortcuts import render, redirect

from django.contrib import messages

from django.views.generic.edit import CreateView

from .models import *

def home(request):

if request.method == "POST":

image = UploadImage()

if len(request.FILES) != 0:

image.image = request.FILES[’image’]

filename = image.image.name

if image.image.size > 5*1024*1024:

raise ValidationError(’File size too large.’)

print("File size too large.")

return render(request, ’home.html’)

elif not filename.lower().endswith((’.jpg’, ’.jpeg’, ’.png’)):

raise ValidationError(’File is not an image.’)

print("File is not an image.")

return render(request, ’home.html’)

else:

image.save()

image.save()

messages.success(request, "Image Uploaded!")

return redirect(’upload/’)

return render(request, ’home.html’)

def upload(request):

image = UploadImage.objects.all().last()

data = {

’image’:image,

}

print(image)

return render(request, ’upload.html’, data)

Use this to modify Contact Detection Performance

model (img_size, threshold_value)

aug_mid_m_600_8_100 (500, 0.05)

model_weight = ’aug_mid_m_600_8_100.pt’

threshold_value = 0.05

img_size = 500

IMAGE DETECTION AND INTERACTION

def results(request):

GET UPLOADED IMAGE

image = UploadImage.objects.all().last()

img_bytes = image.image.read()

img = im.open(io.BytesIO(img_bytes))

DETECTION METHOD

LOADING THE MODEL (can be loaded remotely)

path_hubconfig = "joackinsantos/YOLOv5-Modification:website-integration"

path_hubconfig = "YOLOv5-Modification"

path_weightfile = f"best-weights/{model_weight}"

model = torch.hub.load(path_hubconfig, ’custom’,

path=path_weightfile, source=’local’,

force_reload=True)

results = model(img, size=img_size)

PROCESSING DETECTED IMAGE

remove previous detected image directory to save space

detect_image_path = ’runs/detect’

exp_path = f’{detect_image_path}/exp’

if os.path.exists(exp_path):

shutil.rmtree(exp_path)

creates new detected image

results.print()

results.save()

move directory and change image name

old_path = f’{detect_image_path}/exp/image0.jpg’

new_path = f’{detect_image_path}/image0.jpg’

output_path = f’{detect_image_path}/detect-{str(image)}’

if not os.path.exists(new_path) and not os.path.exists(output_path):

shutil.move(old_path, new_path) # move to non refreshed dir

os.rename(new_path, output_path) # rename detected image

105

INTERACTION METHOD

bb = bounding box

bb = results.pandas().xyxy[0]

iou_threshold = threshold_value

results_df = pd.DataFrame(columns=[’Classification’, ’Interaction_Count’])

interaction_flag = False

interaction_count = 0

separating by class names

head_df = bb[bb[’name’] == ’Head’].reset_index(drop=True)

rear_df = bb[bb[’name’] == ’Rear’].reset_index(drop=True)

loop over heads and rears in the image

for i, head_row in head_df.iterrows():

for j, rear_row in rear_df.iterrows():

bounding box indexing

df[0] = minX, df[1] = minY, df[2] = maxX, df[3] = maxY

head_minX = head_df.iloc[i, 0]

head_minY = head_df.iloc[i, 1]

head_maxX = head_df.iloc[i, 2]

head_maxY = head_df.iloc[i, 3]

rear_minX = rear_df.iloc[j, 0]

rear_minY = rear_df.iloc[j, 1]

rear_maxX = rear_df.iloc[j, 2]

rear_maxY = rear_df.iloc[j, 3]

curr_iou = compute_iou(head_minX, head_maxX, head_minY, head_maxY,

rear_minX, rear_maxX, rear_minY, rear_maxY)

print(curr_iou)

if(curr_iou >= iou_threshold):

interaction_flag = True

interaction_count += 1

temp_list = [1 if interaction_flag else 0,

interaction_count]

results_df.loc[len(results_df)] = temp_list

row = results_df.iloc[0]

classification = ’With Contact’ if row[’Classification’] == 1 else "Without Contact"

count = row[’Interaction_Count’]

data = {

’image’: f’../{output_path}’,

’class’: classification,

’interaction_count’: count

}

return render(request, ’results.html’, data)

def test(request):

return render(request, ’test.html’)

FUNCTIONS

def compute_iou(head_minX, head_maxX, head_minY, head_maxY, rear_minX, rear_maxX, rear_minY, rear_maxY):

determine (x,y) coordinates of the intersection rectangle

x_left = max(head_minX, rear_minX)

y_top = max(head_minY, rear_minY)

x_right = min(head_maxX, rear_maxX)

y_bottom = min(head_maxY, rear_maxY)

compute the area of intersection rectangle

intersection_area = max(0, x_right - x_left + 1) * max(0, y_bottom - y_top + 1)

compute area of both prediction and ground-truth

rectangles

headArea = (head_maxX - head_minX + 1) * (head_maxY - head_minY + 1)

rearArea = (rear_maxX - rear_minX + 1) * (rear_maxY - rear_minY + 1)

union_area = float(headArea + rearArea - intersection_area)

compute IoU

iou = intersection_area / union_area

return iou

USEFUL TESTERS

Tester for Head and Rear dfs

use to test order

print(head_df.head())

print(rear_df.head())

head_minX = head_df.iloc[0, 0]

head_minY = head_df.iloc[0, 1]

head_maxX = head_df.iloc[0, 2]

head_maxY = head_df.iloc[0, 3]

print(head_minX, head_minY, head_maxX, head_maxY)

models.py

import os

from django.db import models

from django.utils.translation import gettext_lazy as _

Create your models here.

106

class UploadImage(models.Model):

image = models.ImageField(_("image"),upload_to=’pig-images/’, null=True, blank=True)

def __str__(self):

return str(os.path.split(self.image.path)[-1])

urls.py

"""PCD_project URL Configuration

The ‘urlpatterns‘ list routes URLs to views. For more information please see:

https://docs.djangoproject.com/en/4.1/topics/http/urls/

Examples:

Function views

1. Add an import: from my_app import views

2. Add a URL to urlpatterns: path(’’, views.home, name=’home’)

Class-based views

1. Add an import: from other_app.views import Home

2. Add a URL to urlpatterns: path(’’, Home.as_view(), name=’home’)

Including another URLconf

1. Import the include() function: from django.urls import include, path

2. Add a URL to urlpatterns: path(’blog/’, include(’blog.urls’))

"""

from django.contrib import admin

from django.urls import path

from PCD_app.views import *

from django.conf import settings

from django.conf.urls.static import static

urlpatterns = [

path("admin/", admin.site.urls),

path("", home, name="home"),

path("upload/", upload, name="upload"),

path("results/", results, name="results"),

path("test/", test, name="test"),

]

if settings.DEBUG:

urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)

main.css

body {

overflow-x: hidden;

position: relative;

z-index: -1;

}

.main-div{

background-color: white;

font-family: ’Reem Kufi Fun’, sans-serif !important;

font-weight:normal;

padding:0;

}

.upload-div{

margin-top: 2%;

margin-bottom: 3%;

}

.how-div{

margin-top: 4%;

margin-bottom: 3%;

}

.upload-button{

font-size:medium;

display:inline-block;

}

.carousel-inner .carousel-item {

width: 700px;

height: auto;

}

.upload-image-container{

position: relative;

display: inline-block;

}

.upload-image{

width: 1000px;

height: auto;

border: 7px solid #1C8572;

box-shadow:0px 3px 2px rgb(85, 85, 85);

transition: transform 0.3s, filter 0.3s;

z-index: 9999;

cursor: zoom-in;

}

img.zoomed {

position: relative;

transform: scale(1.5);

z-index: 9999;

cursor: zoom-out;

107

}

.overlay {

opacity:0;

background-color: black;

position:fixed;

width:100%;

height:100%;

top:0px;

left:0px;

z-index:-1;

}

.upload-text{

background-color: #047675;

font-size: 20px;

color:white;

padding-top: 5px;

padding-bottom: 5px;

padding-left: 75px;

padding-right: 75px;

border-radius: 5px;

}

.results-box-1{

background-color: #1C8572;

color: white;

border-radius: 3px;

align-items: center;

text-align: center;

box-shadow:0px 1px 2px rgb(85, 85, 85);

}

.results-box-2{

background-color: #1C8572;

opacity: 85%;

color:white;

border-radius: 3px;

align-items: center;

text-align: center;

box-shadow:0px 1px 2px rgb(85, 85, 85);

}

.btn{

color: white;

border: none;

border-radius: 15px;

padding-top: 4%;

padding-bottom: 4%;

font-weight: bold;

background-color: #047675;

box-shadow:0px 3px 2px rgb(85, 85, 85);

}

.btn:hover{

background-color: #036260;

color: white;

}

.btn:active, .open > .dropdown-toggle.btn{

background-color: #036260 !important;

border-color:#036260!important;

}

.btn-back{

color: white !important;

border: none;

border-radius: 15px;

font-weight: bold;

background-color: #047675;

box-shadow:0px 3px 2px rgb(85, 85, 85);

}

.btn-back:hover{

background-color: #036260;

color: white;

}

.btn-back:active, .open > .dropdown-toggle.btn{

background-color: #036260 !important;

border-color:#036260!important;

}

.upload-helper{

font-size: small;

}

.circle {

width: 33px;

height: 33px;

line-height: 33px;

border-radius: 50%;

font-size: 18px;

color: #047675;

text-align: center;

background: white;

box-shadow:0px 2px 2px rgb(85, 85, 85);

}

.circle-colored {

width: 22px;

height: 22px;

line-height: 33px;

108

border-radius: 50%;

font-size: 18px;

color: #047675;

text-align: center;

background:#047675;

box-shadow:0px 2px 2px rgb(85, 85, 85);

}

.how-title{

font-size: 20px;

font-weight: bolder;

}

.seg-text{

font-size: 17px;

}

.description-div{

background-color: #ecf5f1;

}

.description-margin{

margin-left: 12%;

margin-right: 12%;

padding-top: 5%;

padding-bottom: 5%;

}

.pig-home{

width: 375px;

height: auto;

border-radius: 50%;

box-shadow:0px 5px 10px rgb(85, 85, 85);

/* -webkit-filter: grayscale(100%); Safari 6.0 - 9.0

filter: grayscale(100%); */

}

.description-logo{

padding-left: 25px;

padding-right: 25px;

}

.description-title{

background-color: #047675;

color: white;

font-size: x-large;

font-weight: bold;

border-radius: 10px;

}

.title-accompany{

background-color: #20937F;

color: white;

font-size: large;

-webkit-mask-image: -webkit-gradient(linear, center top, center bottom,

color-stop(0.75, rgba(0,0,0,1)),

color-stop(1.00, rgba(0,0,0,0)));

mask-image: -webkit-gradient(linear, center top, center bottom,

color-stop(0.75, rgba(0,0,0,1)),

color-stop(1.00, rgba(0,0,0,0)));

}

.pig-title-icon{

width: 60px;

height: auto;

}

.description-logotext{

font-size: larger;

}

.description-text{

font-size: 18px;

margin-right: 10%;

margin-left: 10%;

}

.description-foottext{

font-size: smaller;

margin-right: 10%;

margin-left: 10%;

}

.redirect-button{

font-size: 20px;

border-radius: 15px;

padding-top: 2%;

padding-bottom: 2%;

font-weight: bold;

background-color: #047675;

box-shadow:0px 3px 2px rgb(85, 85, 85);

}

navbar.css

.navbar{

background-color: #047675;

font-family: ’Reem Kufi Fun’, sans-serif !important;

109

box-shadow:0px 2px 3px rgb(85, 85, 85);

}

.navbar-brand{

font-size: 175%;

text-shadow:40px 50px 50px rgb(85, 85, 85);

}

.pig-icon{

width: 70px;

height: auto;

}

footer.css

.footer{

background-color: #047675;

color: white;

font-family: ’Lato’, sans-serif !important;

font-weight: bold;

}

2. Website HTML files
main.html

<!doctype html>

<html lang="en">

<head>

{% load static %}

<!-- Required meta tags -->

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">

<!-- Fonts -->

<link rel="preconnect" href="https://fonts.googleapis.com">

<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>

<link href="https://fonts.googleapis.com/css2?family=Lato:ital,wght@0

↪→ ,100;0,300;0,400;0,700;0,900;1,100;1,300;1,400;1,700;1,900&display=swap" rel="stylesheet">

<link href="https://fonts.googleapis.com/css2?family=Reem+Kufi+Fun:wght@400;500;600;700&display=swap" rel="stylesheet">

<!-- Bootstrap CSS -->

<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@4.3.1/dist/css/bootstrap.min.css" integrity="sha384-

↪→ ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T" crossorigin="anonymous">

<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.1.1/css/all.min.css" integrity="sha512-

↪→ KfkfwYDsLkIlwQp6LFnl8zNdLGxu9YAA1QvwINks4PhcElQSvqcyVLLD9aMhXd13uQjoXtEKNosOWaZqXgel0g==" crossorigin="anonymous"

↪→ referrerpolicy="no-referrer" />

<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/mdb-ui-kit/6.3.0/mdb.min.css"/>

<link rel="icon" type="image/png" href="{% static ’image/pig_icon_2.png’ %}">

<title>TailSafe</title>

</head>

<body>

{% load static %}

<!-- <link rel=’stylesheet’ href={% static ’css/main.css’ %}> -->

<!-- Navbar -->

{% include ’navbar.html’ %}

<!-- Content -->

{% block content %}

{% endblock content %}

{% include ’footer.html’ %}

<!-- Optional JavaScript -->

<!-- jQuery first, then Popper.js, then Bootstrap JS -->

<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-q8i/X+965

↪→ DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo" crossorigin="anonymous"></script>

<script src="https://cdn.jsdelivr.net/npm/popper.js@1.14.7/dist/umd/popper.min.js" integrity="sha384-

↪→ UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1" crossorigin="anonymous"></script>

<script src="https://cdn.jsdelivr.net/npm/bootstrap@4.3.1/dist/js/bootstrap.min.js" integrity="sha384-

↪→ JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM" crossorigin="anonymous"></script>

</body>

</html>

navbar.html

{% load static %}

<link rel="stylesheet" href={% static ’css/navbar.css’ %}>

<!-- Navbar Bootstrap -->

<div class="navbar-container">

<nav class="navbar navbar-expand-lg navbar-light px-4 py-2 d-flex row">

<div class="navbar-icon d-flex flex-row justify-content-center">

TailSafe

</div>

</nav>

</div>

110

footer.html

{% load static %}

<link rel="stylesheet" href={% static ’css/footer.css’ %}>

<footer class="footer text-center text-lg-start">

<div class="text-center p-3" style="background-color: rgba(0, 0, 0, 0.2);">

TailSafe by

 <u>Joackin Santos</u>

</div>

</footer>

home.html

{% extends ’main.html’ %}

{% load static %}

{% block content %}

<link rel="stylesheet" href={% static ’css/main.css’ %}>

<div class="container-fluid main-div d-flex flex-column">

<div class="description-div container-fluid text-center">

<div class="description-margin d-flex flex-row justify-content-center">

<div class="description-logo">

<div class="d-flex flex-column align-self-center">

<div class="description-image mt-3 mr-2">

</div>

</div>

</div>

<div class="description-group d-flex flex-column justify-content-center align-self-center">

<div class="description-title d-flex flex-column">

<div class="justify-content-center mt-2 py-1 d-flex flex-row">

<div class="d-flex mr-2">

</div>

<div class="d-flex align-self-center mt-2 mb-1">

TailSafe

</div>

</div>

<div class="title-accompany mt-1 pt-2 d-flex flex-row justify-content-center">

<p>

Empowering Farm Decision Making with Pig Tail Biting Detection

</p>

</div>

</div>

<div class="description-text text-justify text-wrap mt-4">

<p class="">

Tail biting is a significant welfare problem in pig farming where one pig bites the tail of another,

causing harm, pain, and stress in the pen. This can be a sign of various issues such as poor living

↪→ conditions,

health problems, and boredom, which can lead to abnormal behavior.

TailSafe is a website application developed to detect head-to-rear contact between pigs in a pen by analyzing

uploaded pig pen images. This can help diagnose if tail biting is possibly present in a pen to act as a

↪→ decision

support tool for medical interventation and maintain welfare in the pig farm.

</p>

</div>

<div class="description-foottext text-uppercase text-justify text-wrap mt-4 text-center">

<button class="redirect-button btn container-fluid text-uppercase mt-2">

Start detecting now

</button>

<p class="mt-3">

Pig Head-to-Rear Contact Detection Website Application

</p>

</div>

</div>

</div>

</div>

<div class="how-div">

<div class="how-title container-fluid text-center mb-5 font-weight-bold">

How to Use TailSafe for Pig Tail Biting Detection

</div>

<div class="container segment-container">

<div class="row">

<div class="col-sm">

<div class="row text-justify pr-1">

<p class="col-0 mt-2 circle">1</p>

<p class="seg-text col p-1 ml-2 mr-4">

Select a pig pen image by clicking on "Choose File" then click the "Upload Image" button to upload it.

</p>

</div>

</div>

<div class="col-sm">

<div class="row text-justify pr-1">

<p class="col-0 mt-2 circle">2</p>

<p class="seg-text col p-1 ml-2 mr-4">

Confirm the selected image by clicking the "Submit and Process" button to initiate image processing.

</p>

</div>

</div>

<div class="col-sm">

<div class="row text-justify pr-1">

<p class="col-0 mt-2 circle">3</p>

<p class="seg-text col p-1 ml-2 mr-4">

111

View the results to determine if the image contains any contacts and the total counts of contacts detected.

</p>

</div>

</div>

</div>

</div>

</div>

<hr class="hr hr-blurry" />

<div class="upload-div d-flex flex-column mx-auto">

<div id="upload-section" class="upload-text-container d-flex justify-content-center mx-3 mt-2 mb-2 ">

<p class="upload-text head-text font-weight-bold">

Detect head-to-rear contact between pigs

</p>

</div>

<form action="" method="POST" enctype="multipart/form-data">

<div class="upload-button-container d-flex flex-column justify-content-center mt-5">

<div class="custom-file custom-file-button mb-2">

<input id="fileInput" class="form-control form-control-lg" type="file" Required name="image" />

</div>

<button type="submit" class="upload-button btn container-fluid text-uppercase mt-2">

<i class="fa-solid fa-plus mr-2"></i>UPLOAD IMAGE

</button>

{% csrf_token %}

</div>

</form>

<div class="upload-helper-container d-flex justify-content-center">

<p class="upload-helper mt-1">

please upload images only

</p>

</div>

</div>

</div>

{% endblock content %}

upload.html

{% extends ’main.html’ %}

{% load static %}

{% block content %}

<link rel="stylesheet" href={% static ’css/main.css’ %}>

<div class="container-fluid main-div d-flex flex-column">

<div class="how-div mt-5 mb-2">

<div class="how-title container-fluid text-center mb-4 font-weight-bold">

How to Use TailSafe for Pig Tail Biting Detection

</div>

<div class="container segment-container">

<div class="row">

<div class="col-sm">

<div class="row text-justify pr-1">

<p class="col-0 mt-2 circle">1</p>

<p class="seg-text col p-1 ml-2 mr-4">

Select a pig pen image by clicking on "Choose File" then click the "Upload Image" button to upload it.

</p>

</div>

</div>

<div class="col-sm">

<div class="row text-justify pr-1">

<p class="col-0 mt-2 circle">2</p>

<p class="seg-text col p-1 ml-2 mr-4">

Confirm the selected image by clicking the "Submit and Process" button to initiate image processing.

</p>

</div>

</div>

<div class="col-sm">

<div class="row text-justify pr-1">

<p class="col-0 mt-2 circle">3</p>

<p class="seg-text col p-1 ml-2 mr-4">

View the results to determine if the image contains any contacts and the total counts of contacts detected.

</p>

</div>

</div>

</div>

</div>

</div>

<hr class="hr hr-blurry" />

<div class="upload-div d-flex flex-column mx-auto">

<div class="upload-text-container d-flex justify-content-center mx-3 mt-1 mb-1">

<p class="upload-text head-text">

Detect head-to-rear contact between pigs

</p>

</div>

<div class="upload-image-container d-flex justify-content-center">

<div class="overlay"></div>

</div>

<div class="upload-button-container d-flex justify-content-center mt-5">

<div class="">

SUBMIT AND PROCESS

</div>

</div>

</div>

<hr class="hr hr-blurry" />

<div class="back-button-container d-flex justify-content-center mt-2 mb-4">

112

<i class="fa-solid fa-arrow-left mr-2"></i>BACK

</div>

</div>

<script>

function redirectToMainPage() {

window.location.href = ’/#upload-section’;

}

function zoomImage(element) {

element.classList.toggle(’zoomed’);

document.body.classList.toggle(’darken-page’);

var overlay = document.querySelector(’.overlay’);

overlay.classList.toggle(’show’);

if (overlay.classList.contains(’show’)) {

overlay.style.opacity = ’0.5’;

overlay.style.zIndex = ’1000’;

} else {

overlay.style.opacity = ’’;

overlay.style.zIndex = ’’;

}

if (element.classList.contains(’zoomed’)) {

element.style.cursor = ’zoom-out’;

} else {

element.style.cursor = ’’;

}

}

</script>

{% endblock content %}

results.html

{% extends ’main.html’ %}

{% load static %}

{% block content %}

<link rel="stylesheet" href={% static ’css/main.css’ %}>

<div class="container-fluid main-div d-flex flex-column">

<div class="upload-div d-flex flex-column mx-auto mb-4">

<div class="upload-text-container d-flex justify-content-center mx-3 mt-4 mb-2">

<p class="upload-text head-text">Detect head-to-rear contact between pigs</p>

</div>

<div class="upload-image-container d-flex justify-content-center">

<div class="overlay"></div>

</div>

<!-- Results segment-->

<div class="results-container container mt-3 px-5 font-weight-bold">

<div class="row text-center">

<div class="col results-box-1 mr-1 text-uppercase py-2 align-self-center">

Classification

</div>

<div class="col results-box-2 py-2 align-self-center">

{{ class }}

</div>

</div>

<div class="row mt-1">

<div class="col results-box-1 mr-1 text-uppercase py-2 align-self-center">

Contact Count

</div>

<div class="col results-box-2 py-2 align-self-center">

{{ interaction_count }}

</div>

</div>

</div>

<!-- Results segment -->

</div>

<hr class="hr hr-blurry" />

<div class="how-div mt-3 mb-1">

<div class="how-title container-fluid text-center mb-4 font-weight-bold">

Making Sense of the Results Above

</div>

<div class="container segment-container">

<div class="row">

<div class="col-sm">

<div class="row text-justify pr-1">

<p class="col-0 mt-2 circle-colored">1</p>

<p class="seg-text col p-1 ml-2 mr-4">

The Classification result provides two possible values: With Contact and Without Contact.

If the result is With Contact, it indicates that the system has detected instances of head-to-rear

contact or tail biting in the provided image. Otherwise, if the result is Without Contact, it means

that no such contact was detected.

</p>

</div>

</div>

<div class="col-sm">

<div class="row text-justify pr-1">

<p class="col-0 mt-2 circle-colored">1</p>

<p class="seg-text col p-1 ml-2 mr-4">

Assuming the classification result indicates With Contact, the Contact Count result represents the

↪→ total

number of occurrences of head-to-rear contact or tail biting in the provided image. If there is no contact

detected, the Contact Count will be zero.

</p>

</div>

</div>

113

</div>

</div>

</div>

<hr class="hr hr-blurry" />

<div class="back-button-container d-flex justify-content-center mt-2 mb-4">

<i class="fa-solid fa-house-chimney mr-2"></i>HOME

<i class="fa-solid fa-arrow-left mr-2"></i>DETECT AGAIN

</div>

</div>

<script>

function redirectToMainPage() {

window.location.href = ’/#upload-section’;

}

function zoomImage(element) {

element.classList.toggle(’zoomed’);

document.body.classList.toggle(’darken-page’);

var overlay = document.querySelector(’.overlay’);

overlay.classList.toggle(’show’);

if (overlay.classList.contains(’show’)) {

overlay.style.opacity = ’0.5’;

overlay.style.zIndex = ’1000’;

} else {

overlay.style.opacity = ’’;

overlay.style.zIndex = ’’;

}

if (element.classList.contains(’zoomed’)) {

element.style.cursor = ’zoom-out’;

} else {

element.style.cursor = ’’;

}

}

</script>

{% endblock content %}

114

XI. Acknowledgment

I would like to express my heartfelt gratitude to all those who have supported me

throughout my journey at the University of the Philippines Manila.

First and foremost, I want to thank God for granting me strength, guidance,

and inspiration throughout this endeavor.

To my loving family, I am deeply grateful for providing me with the necessary

resources, such as my laptop and funding for essential software, enabling me to

pursue and complete my SP. Your unwavering support and belief in me have been

instrumental in my success.

A special appreciation goes to my partner, whose unwavering support and

invaluable insights have played a significant role in shaping the topic and direction

of my SP. Your encouragement and contributions have been truly remarkable.

I extend my sincere thanks to my SP adviser, Dr. Vincent Magboo, for his

guidance, expertise, and mentorship. Your valuable advice, from refining the

research paper to making crucial decisions, has been instrumental in keeping me

on the right path. I am truly grateful for your unwavering support.

To my dear friends, thank you for allowing me to share my challenges and for

being there for me. Your support, encouragement, and understanding have been

invaluable during this journey.

I would also like to express my gratitude to my blockmates for their knowledge

sharing and allowing me to learn from their experiences. Your camaraderie and

collaborative spirit have greatly enriched my understanding.

In conclusion, I want to express my heartfelt appreciation to everyone who has

been part of this incredible journey. Your unwavering support, encouragement,

and belief in me have been invaluable. Thank you all for everything.

115

	Acceptance Sheet
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background of the Study
	Statement of the Problem
	Objectives of the Study
	Significance of the Project
	Scope and Limitations
	Assumptions

	Review of Related Literature
	Precision Livestock Farming Significance
	Behavioral Analysis
	Pig Detection
	Synthesis

	Theoretical Framework
	Tail Biting
	Convolutional Neural Network
	Convolution Layer
	Pooling Layer
	Fully Connected Layer

	Detection Method
	YOLO Algortihm
	YOLOv5
	Training YOLOv5
	YOLOv5 Architecture

	Interaction Method
	Data Augmentation
	Spatial Augmentation
	Pixel Augmentation

	Detection Performance Metrics
	Interaction Performance Metrics
	Confusion Matrix
	Classification Measure

	Design and Implementation
	Pig Tail Biting Dataset
	Research Approach
	Use Cases
	Technical Architecture

	Results
	Dataset
	Data Processing
	Detection Method
	Determining the Best Model Size
	Training the Base Model and Hyperparameter Tuning
	Evaluating Medium-Sized Model Results

	Interaction Method
	Integrating Methods
	Evaluating Interaction Results

	Model Improvements
	Creating Different Datasets
	Evaluating Improved Datasets Results: Detection
	Evaluating Improved Datasets Results: Interaction

	Best End-to-End Models
	Comparative Analysis
	TailSafe: Website Application
	Landing Page
	Image Confirmation Page
	Results Page

	Summary of Detection and Interaction Method Results
	Detection Models using Primary Dataset
	Detection Models using Secondary Datasets
	Interaction Method Results using Primary Dataset
	Interaction Method Results using Secondary Dataset

	Discussions
	Discussion of Work
	Comparison to Previous Work
	Issues in Development

	Conclusions
	Recommendations
	Bibliography
	Appendix
	Google Colab Notebooks
	Source Code
	Django Web Framework
	Website HTML files

	Acknowledgment

